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Abstract

Many scienti�c applications are I/O intensive and generate or access large data sets, spanning hundreds

or thousands of \�les." Management, storage, e�cient access, and analysis of this data present an extremely

challenging task. We have developed a software system, called Scienti�c Data Manager (SDM), that uses a
combination of parallel �le I/O and database support for high-performance scienti�c data management. SDM

provides a high-level API to the user and, internally, uses a parallel �le system to store real data and a database

to store application-related metadata.

In this paper, we describe how we designed and implemented SDM to support irregular applications. SDM

can e�ciently handle the reading and writing of data in an irregular mesh as well as the distribution of index

values. We describe the SDM user interface and how we implemented it to achieve high performance. SDM makes

extensive use of MPI-IO's noncontiguous collective I/O functions. SDM also uses the concept of a history �le to

optimize the cost of the index distribution using the metadata stored in the database. We present performance

results with two irregular applications, a CFD code called FUN3D and a Rayleigh-Taylor instability code, on the

SGI Origin2000 at Argonne National Laboratory.
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Advanced Scienti�cComputingResearch, U.S. Departmentof Energy, under ContractW-31-109-Eng-38, and in part by aWork-for-Others
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1 Introduction

Many large-scale scienti�c applications are I/O intensive and generate large amounts of data (on the order of several

hundred gigabytes to terabytes) [8, 24]. Many of these applications perform their computation and I/O on an

irregularly discretized (and distributed) mesh. The data accesses in those applications make extensive use of arrays,

called indirection arrays [7, 23] or map arrays [11], in which each value of the array denotes the corresponding data

position in memory or in the �le. In irregular applications, data can be distributed either by using compiler directives

with the support of runtime preprocessing [9, 33] or by using a runtime library [7, 23]. Most of the previous work in

the area of unstructured-grid applications focuses on computation and communication in such applications, rather

than I/O.

We have developed a software system for large-scale scienti�c data management, called Scienti�c Data Manager

(SDM) [22]. SDM aims to combine the good features of both �le I/O and databases. SDM provides a high-level, user-

friendly interface. Internally, SDM interacts with a database to store application-related metadata and uses MPI-IO

to store the real data on a high-performance parallel �le system. SDM takes advantage of various I/O optimizations

available in MPI-IO, such as collective I/O and noncontiguous requests, in a manner that is transparent to the user.

As a result, users can access data with the performance of parallel �le I/O, without having to bother with the details

of �le I/O.

In a previous paper [22], we described the use of SDM for regular applications. In this paper, we describe the API,

design, and implementation of SDM for irregular applications. SDM can e�ciently handle the reading and writing

of data in an irregular mesh as well as the distribution of index values. SDM also uses the concept of a history

�le to optimize the cost of the index distribution using the metadata stored in database. We present performance

results with two irregular applications, a CFD code called FUN3D and a Rayleigh-Taylor instability code, on the

SGI Origin2000 at Argonne National Laboratory.

The rest of this paper is organized as follows. In Section 2 we discuss our goals in developing SDM for irregular

applications. In Section 3 we describe, with the help of an example, the SDM API and how it is implemented.

Performance results are presented in Section 4. We discuss related work in Section 5 and conclude in Section 6 with

a brief discussion of future research.

2 Design Objectives

Our main objectives in designing SDM for irregular applications were to achieve high-performance parallel I/O, to

provide a convenient high-level API, and to optimize the execution cost of irregular applications.

� High-Performance I/O. To achieve high-performance I/O, we decided to use a parallel �le-I/O system to

store real data and use MPI-IO to access this data. MPI-IO, the I/O interface de�ned as part of the MPI-2

standard [11, 18], is rapidly emerging as the standard, portable API for I/O in parallel applications. MPI-IO is

speci�cally designed to enable the optimizations that are critical for high-performance parallel I/O. Examples

of these optimizations include collective I/O, the ability to access noncontiguous data sets, the ability to pass

hints to the implementation about access patterns, and �le-striping parameters.

� High-Level API. Our goal was to provide a high-level uni�ed API for any kind of application (regular or

irregular) while encapsulating the details of either MPI-IO or databases. The user can specify the data with

a high-level description, together with annotations, and use a similar API for data retrieval. SDM internally

translates the user's request into appropriate MPI-IO calls, including creating MPI derived datatypes for

noncontiguous data [31]. SDM also interacts with the database when necessary, by using embedded SQL

functions.

� Optimization for Irregular Applications. In irregular applications, the cost of an index distribution is

usually expensive, in terms of communication and computation volumes. In SDM, after the index values are

partitioned among processes, the local index subsets of all processes are asynchronously written to a history

�le and the associated metadata is stored in the database. When the same index distribution is needed in

subsequent runs, the index values are read from the history �le using the metadata stored in the database,

thereby avoiding communication and computation for the same index distribution.
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Figure 1: A sample irregular problem and its solution

3 Implementation

With the help of a sample irregular problem, we discuss the SDM API for solving the problem and how the API is

implemented.

3.1 An Irregular Problem and SDM API

Figure 1 shows an example of a typical irregular problem that sweeps over the edges of an irregular mesh. In this

problem, edge1 and edge2 are two arrays representing nodes connected by an edge, and arrays x and y are the actual

data associated with each edge and node, respectively. The partitioned arrays of edge1, edge2, x, and y contain a

single level of \ghost data" beyond the boundaries to minimize remote accesses. After the computation is completed,

the results p and q are written to a �le in the order of global node numbers.

Figures 2(a) and 2(b) show the SDM API for writing the results p and q and for partitioning edge1, edge2, x,

and y among processes to solve the problem presented in Figure 1. We use the term import to distinguish it from

a read operation. A read operation reads the data created in SDM, whereas an import operation reads the data

created outside SDM.

3.2 Implementation Details

The partitioning vector is a vector generated from a graph-partitioning tool, such as MeTis[25, 14]. Each value of

the vector denotes the rank of the process to which the node is assigned. The map array speci�es the mapping of

each element of the local array to the global array. This map array is created in SDM after partitioning the indexes

using a partitioning vector, or it can be speci�ed by the user.

Figure 2(a) shows the steps involved in initializing SDM. The function SDM initialize is called to establish a

database connection (for storing metadata). The data arrays to be written to �les as a result of simulation, p and q, are

grouped in SDM make datalist, and the associated metadata is stored in the database by calling SDM set attributes.

Figure 2(b) describes the steps in SDM to import and partition the indices and data. The four arrays, edge1,

edge2, x, and y, are grouped to be imported into SDM, and the metadata is stored in the database by SDM make importlist.

In order to partition edge1 and edge2, SDM import is called to import the arrays contiguously. In our example,

edges 0 and 1 are imported to process 0, and edges 2 and 3 are imported to process 1.

If there is a history �le for this problem size, the function SDM partition index reads the already partitioned

edge1 and edge2 from the history �le and converts them to localized edges by using the partitioning vector. This
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(b)(a)

SDM_initialize (nameOfApplication);
result = SDM_make_datalist (2, {p,q});
result[0].data_type = DOUBLE;
SDM_associate_attributes (2, &result[0]);
handle = SDM_set_attributes (2, result);

..................

/* Partition edge1, edge2, x and y among processes */
..................

For (t=0; t<maxStep; t++) {
SDM_data_view (handle, 2, p, &vector, &localNodes);

Do Computation and produce results p and q;

For (each checkpoint) {

SDM_write(handle, p, t, pBuf);
SDM_write(handle, q, t, qBuf);

}
}

SDM_finalize (handle, 2);

import = SDM_make_datalist (4, {edge1, edge2, x, y});
import[2].data_type = DOUBLE;
SDM_associate_attributes(2, &import[2]);
SDM_make_importlist(handle, 4, import);

SDM_import(handle, edge1, 0, totalEdges, tmp);
SDM_import(handle, edge2, (totalEdges*sizeof(int)), totalEdges,

/* Distribute edge1 and edge2 among processes */
vector = SDM_partition_table (handle, partitioning_vector, totalNodes);
partitioned_edge = SDM_partition_index(handle, partitioning_vector,

totalNodes, &tmp, &vector);

localEdges = SDM_partition_index_size(handle);
localNodes = SDM_partition_data_size(handle);

/* Make a history of this index distribution */
SDM_index_registry(handle, partitioned_edge, &localEdges);

/* Import x*/
file_offset = 2*totalEdges*sizeof(int);
SDM_data_view(handle, 1, x, &partitioned_edge, &localEdges);
SDM_import(handle, x, file_offset, totalEdges, xBuf);

/* Import y */

SDM_data_view(handle, 1, y, &vector, &localNodes);
SDM_import(handle, y, file_offset, totalNodes, yBuf);

SDM_release_importlist(handle, 4);

tmp+(totalEdges*sizeof(int)));

file_offset += totalEdges*sizeof(double);

Figure 2: SDM API: (a) for writing results and (b) for partitioning indices and data

approach avoids the communication cost to exchange each process's edges and the computation cost to choose the

edges to be assigned. The disadvantage of the history �le is that it cannot be used if the program is run on a di�erent

number of processes from when the �le was created.

One e�cient use of the history �le is to create it in advance for the various numbers of processes of interest. As

long as the user runs the application with any of those numbers of processes, an appropriate history can be chosen,

thereby reducing communication and computation costs. If there is no history �le, the edges in each process are

distributed by reading all the data in parallel and performing a ring-oriented communication.

If at least one node of an edge has been partitioned to a process, the edge is assigned to that process. For example,

edge 0 is assigned to both process 0 and process 1 because one node of the edge has been partitioned to process 0

and the other node has been partitioned to process 1. This edge is a ghost edge for both processes and is stored to

minimize communication.

In Figure 2(b), partitioned edge contains the edges assigned to each process, and vector contains the nodes

assigned to it. These are the two map arrays used to distribute the physical data associated with each edge and

node, respectively.

In SDM index registry, the index distribution is registered to the database, and the partitioned edges are asyn-

chronously written to a history �le to be retrieved in subsequent runs requiring the same edge distribution. The use

of the SDM index registry is optional.

In order to import and partition data x and y in SDM import, SDM data view needs to be called to de�ne a data

mapping between a noncontiguous global view of the �le and a local view of the processor memory. In SDM import,

the associated data is irregularly distributed using this data mapping by calling a collective MPI-IO function. In

SDM release importlist, the internal data structures used by SDM to import data are freed.

Figure 2(a) shows the steps to write two data arrays, p and q, after completing the computations at each

checkpoint. Before writing p and q, the data mapping to write is de�ned in SDM data view using the map array

(vector) associated with the node partition.

SDM supports three di�erent ways of organizing data in �les. In level 1, each data generated at each time step is

written to a separate �le. In level 2, each data (within a group) is written to a separate �le, but di�erent iterations

of the same data are appended to the same �le. This method results in a smaller number of �les. In level 3, all

iterations of all data belonging to a group are stored in a single �le. The idea is that if a �le system has high �le-open

and �le-close costs, and an application has a high �le-view cost (such as in irregular applications), SDM can generate

a very small number of �les. On the other hand, if an application produces a large amount of data with a large

problem size, level-3 �le organization would result in very large �les, which may degrade performance.

Figure 3 depicts the metadata storage in the database and the organization of data in �les in SDM for the example
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ow for solving the example in Figure 1

in Figure 1.

4 Performance Results

We obtained performance results on the SGI Origin2000 at Argonne National Laboratory. The �le system on the

Origin2000 is XFS [12, 29], and we used MySQL [19] as the database to store metadata. The �rst application

template we benchmarked was a tetrahedral vertex-centered unstructured grid CFD code called FUN3D [1], and the

second application template was a Rayleigh-Taylor instability application (RT) [10].

4.1 Results for FUN3D

We used a grid of about 18 million edges and ran the code on 64 processors. Figure 4 shows the bandwidth to

import and partition the 18 million edges, four sets each of about 144 Mbytes of data associated with edges, and

another four sets of 21 MBytes of data associated with nodes. In the original version of the application|without

using SDM|all the I/O operations were performed by a single process (process 0), which then broadcast data to

other processes. SDM, on the other hand, performs I/O in parallel from all processes using MPI-IO. The bar labeled

index distri in Figure 4 shows the communication and computation costs to partition the edges after importing

them into the application. The bar labeled import shows the cost of reading the edges and eight data arrays.

In the original application, the edges are read in two steps: one step to determine the amount of memory necessary

to store the partitioned edges and the other step to actually read the edges. SDM, however, extends the allocated

memory dynamically as needed (using the C function realloc) and is therefore able to read the partitioned edges in

a single step. This contributes to the reduced cost of index distri when using SDM. When partitioning the edges

with a history �le, the cost of index distri is nothing but reading the history �le of the edges in a contiguous way,

including the database cost to access the metadata.

Figure 5 shows the I/O bandwidth for writing and then reading back the data generated from the application

using 64 processors. The total data size was approximately 379 MBytes. In level 1, each data array was written to

separate �les, resulting in the creation of 10 di�erent �les. Each time a data array was written in level 1, it incurred

the cost of opening a �le and de�ning an MPI-IO �le view to access the data from the portion of the �le pointed to

by the global �le o�set. In level 2, however, each data array generated at each time step was appended in �ve �les,

generating only �ve �le-open and �le-view costs. This reduced number of �les resulted in a slight improvement in

performance. In level 3, only two �les were generated, resulting in the best I/O performance among the three �le
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organizations. The di�erence between the three �le organizations was not large because the �le-open cost is small

on XFS.

4.2 Results for RT

Figure 6 shows the I/O Bandwidth for writing approximately 550 MBytes of data. In the original application, the

write operation was performed in a sequential way from one process. When we ported the application to SDM, the

I/O performance increased signi�cantly as a result of the I/O optimizations of MPI-IO. Since two data arrays are

written to �les separately, SDM supports two di�erent ways of �le organization: level 1 and level 2/3 (levels 2 and 3

are identical in this case). As shown in Figure 6, on the SGI Origin2000, changing the �le organization did not a�ect

the I/O performance because the cost of �le open and �le view is low. When the number of processors was increased

from 32 to 64 to write the same data size, the I/O performance decreased because of the smaller granularity of data

transfer.

5 Related Work

Numerous e�orts have been made to optimize I/O in parallel �le systems and runtime libraries [3, 5, 6, 13, 15, 17,

21, 26, 30]. SRB (Storage Resource Broker) [2] provides a uniform interface to access various storage systems, such

as �le systems, Unitree, HPSS, and database objects; however, it does not support optimizations such as collective

I/O that MPI-IO provides. Shoshani et al. [27, 28] describe an architecture for optimizing access to large volumes of

scienti�c data stored on tapes. The Active Data Repository [16] and DataCutter [4] optimize storage, retrieval, and

processing of very large multidimensional datasets. The main di�erence between this work and other e�orts in I/O

is that this work aims to combine the good features of parallel �le I/O and databases, whereas other e�orts focus on

either parallel I/O or data management, not both.

6 Summary

We have described the SDM system, API, and implementation for I/O in irregular applications. SDM provides an

easy-to-use user interface for managing large data sets and internally uses MPI-IO for high-performance I/O and

a database for storing metadata. We studied the performance of SDM using two irregular applications: FUN3D

and RT. When we ported both applications to use SDM, there was a signi�cant improvement in I/O performance

compared with the original application. Also, we observed that using a history �le for the index distribution helped

reduce the computation and communication costs. However, changing the SDM �le organization from level 1 to level

3 did not greatly a�ect the performance on the SGI Origin2000 because of its low �le-open and �le-view costs.

We plan to develop SDM further to support visualization applications and to investigate whether SDM can

e�ectively be used as a strategy for implementing libraries such as HDF [20] and netCDF [32].

In the full version of this paper, we will provide more details about the SDM API for irregular applications and

how it is implemented to take advantage of MPI-IO optimizations. We will also provide more performance results.
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