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Benchmarking Optimization Software with COPS

by

Elizabeth D. Dolan and Jorge J. Mor�e

Abstract

We describe version 2.0 of the COPS set of nonlinearly constrained optimization

problems. We have added new problems, as well as streamlined and improved most of

the problems. We also provide a comparison of the LANCELOT, LOQO, MINOS, and

SNOPT solvers on these problems.

Introduction

The COPS [5] test set provides a modest selection of di�cult nonlinearly constrained opti-

mization problems from applications in optimal design, 
uid dynamics, parameter estima-

tion, and optimal control. In this report we describe version 2.0 of the COPS problems. The

formulation and discretization of the original problems have been streamlined and improved.

We have also added new problems.

The presentation of COPS follows the original report, but the description of the problems

has been streamlined. For each problem we discuss the formulation of the problem and the

structural data in Table 0.1 on the formulation. The aim of presenting this data is to

provide an approximate idea of the size and sparsity of the problem.

Table 0.1: Description of test problems

Variables

Constraints

Bounds

Linear equality constraints

Linear inequality constraints

Nonlinear equality constraints

Nonlinear inequality constraints

Nonzeros in r2f(x)

Nonzeros in c0(x)

We also include the results of computational experiments with the LANCELOT, LOQO,

MINOS, and SNOPT solvers. These computational experiments di�er from the original [5]

results in that we have deleted problems that were considered to be too easy. Moreover,

in the current version of the computational experiments, each problem is tested with four

variations.

An important di�erence between this report and the original [5] report is that the tables

that present the computational experiments are generated automatically from the testing

script. This is explained in more detail in the following section, Testing Methods.
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Testing Methods

We have performed our trials on sixty-eight variants of seventeen di�erent applications,

which constitute version 2.0 of the COPS set. The implementations are written in the

AMPL modeling language for use with the AMPL (version 20000906) interfaces to nonlin-

early constrained optimization solvers of interest to us. The solvers include LANCELOT

(AMPL driver 19990513), LOQO 5.03 (20000528), MINOS 5.5 (19981015), and SNOPT 5.3-4

(19981124).

We have devised a script for running a problem on each solver successively, so as to

minimize the e�ect of 
uctuation in the machine load. The script tracks the wall-clock

time from the start of the solve, killing any process that runs for more than 3,600 seconds,

which we declare unsuccessful. We cycle through all problem variants, recording the wall-

clock time as well as the combination of AMPL system time (to interpret the model and

compute varying amounts of derivative information required by each solver) and solver time.

We consider the times returned by AMPL de�nitive, but we initially record the wall-clock

times to check for discrepancies in the solvers' methods of calculating execution time. We

include no problem results for which the AMPL time and the wall-clock time di�er by more

than ten percent. To further ensure consistency, we have veri�ed that the AMPL time

results we present could be reproduced to within ten percent accuracy. All computations

were done on a SparcULTRA2 running Solaris 7.

Once all the runs have completed, a parser searches the output �les for key text patterns

indicating whether the solver completed successfully. The script then gathers the data we

need into tables and other �les for later calculations.

The AMPL interfaces to these solvers provide numerous options. We set options for

each solver and execute our �nal complete runs with the same options for all problems. The

options involve setting the output level so that we can gather the data we want, increasing

the iteration limits as much as allowed, and increasing the super-basics limits for MINOS

and SNOPT to 5000. None of the failures we record in the �nal trials include any solver

error messages about having violated these limits.

We realize that testing optimization software is a notoriously di�cult problem and that

there may be objections to the testing presented in this report. For example, performance

of a particular solver may improve signi�cantly if non-default options are given. Another

objection is that we only use one starting point per problem and that the performance of a

solver may be sensitive to the choice of starting point. We also have used the default stopping

criteria of the solvers. This choice may bias results but should not a�ect comparisons that

rely on large time di�erences. In spite of these objections, we feel that it is essential that we

provide some indication of the performance of optimization solvers on interesting problems.

This report is an e�ort in this direction.

2



1 Largest Small Polygon

Find the polygon of maximal area, among polygons with nv sides and diameter d � 1.

Formulation

This is a classic problem (see, for example, Graham [16]). If (ri; �i) are the coordinates of

the vertices of the polygon, then we must minimize

f(r; �) = �1

2

nv�1X
i=1

ri+1ri sin(�i+1 � �i)

subject to the constraints

r
2
i
+ r

2
j
� 2rirj cos(�i � �j) � 1; 1 � i � nv; i < j � nv ;

�i � �i+1; 1 � i < nv;

�i 2 [0; �]; ri � 0; 1 � i � nv:

Our implementation follows [14] and �xes the last vertex by setting rnv = 0 and �nv = �.

By �xing a vertex at the origin, we can add the bounds ri � 1.

The optimal solution is not usually a regular hexagon, as was shown by Graham [16].

Another interesting feature of this problem is the presence of order n2v nonlinear nonconvex

inequality constraints. We also note that as nv ! 1, we expect the maximal area to

converge to the area of a unit-diameter circle, �=4 � 0:7854. This problem has many local

minima. For example, for nv = 4 a square with sides of length 1=
p
2 and an equilateral

triangle with another vertex added at distance 1 away from a �xed vertex are both global

solutions with optimal value f = 1

2
. Indeed, the number of local minima is at least O(nv !).

Thus, general solvers are usually expected to �nd only local solutions. Data for this problem

appears in Table 1.1.

Table 1.1: Largest-small polygon problem data

Variables 2nv
Constraints ( 1

2
nv + 1)(nv � 1)

Bounds 2nv
Linear equality constraints 0

Linear inequality constraints nv � 1

Nonlinear equality constraints 0
Nonlinear inequality constraints 1

2
nv(nv � 1)

Nonzeros in r2f(x) 6nv
Nonzeros in c0(x) 2nv(nv � 1)

Performance

Results for the AMPL implementation are summarized in Table 1.2. A polygon with almost

equal sides is the starting point. Global solutions for several nv are shown in Figure 1.1.
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Table 1.2: Performance on largest small polygon problem

Solver nv = 25 nv = 50 nv = 75 nv = 100

LANCELOT 12.83 s 398.12 s 1148.2 s z

f 7.79715e-01 7.83677e-01 7.84747e-01 z

c violation 8.89750e-06 1.40500e-06 2.81600e-06 z

iterations 61 192 176 z

LOQO 3.49 s 30.16 s 268.9 s z

f 7.64714e-01 7.77520e-01 7.77554e-01 z

c violation 1.2e-09 4.0e-09 1.4e-09 z

iterations 110 203 566 z

MINOS 2.11 s 28.45 s 98.54 s 344.81 s

f 7.64383e-01 6.57163e-01 7.60729e-01 7.72803e-01

c violation 1.2e-13 2.2e-16 2.7e-13 1.3e-10
iterations 280 1552 2166 5184

SNOPT 1.14 s 12.69 s 91.07 s 256.6 s
f 7.79740e-01 7.84016e-01 7.84769e-01 7.85040e-01

c violation 2.9e-10 9.1e-10 1.1e-09 1.5e-07

iterations 91 244 499 752

y Errors or warnings. z Timed out.
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Figure 1.1: Polygons of maximal area with nv = 6; 10; 20 (left, center, right)

4



2 Distribution of Electrons on a Sphere

Given np electrons, �nd the equilibrium state distribution (of minimal Coulomb potential)

of the electrons positioned on a conducting sphere.

Formulation

This problem, known as the Thomson problem of �nding the lowest energy con�guration of

np point charges on a conducting sphere, originated with Thomson's plum pudding model

of the atomic nucleus. This problem is representative of an important class of problems in

physics and chemistry that determine a structure with respect to atomic positions.

The potential energy for np points (xi; yi; zi) is de�ned by

f(x; y; z) =

np�1X
i=1

npX
j=i+1

�
(xi � xj)

2 + (yi � yj)
2 + (zi � zj)

2
��1

2 ;

and the constraints on the np points are

x
2
i + y

2
i + z

2
i = 1; i = 1; : : : ; np:

Data for this problem appears in Table 2.1.

This problem has many local minima at which the objective value is relatively close to

the objective value at the global minimum. Experimental and theoretical results [18, 20]

show that

min
�
f(v1; : : : ; vnp) : kvik = 1; 1 � i � np

	
� 1

2
n
2
p(1� "); 0 � " �

�
1

np

�1=2
:

Also, the number of local minima grows exponentially with np. Thus, determining the

global minimum is computationally di�cult, and solvers are usually expected to �nd only

a local minimum.

Table 2.1: Electrons on a sphere problem data

Variables 3np
Constraints np
Bounds 0

Linear equality constraints 0

Linear inequality constraints 0
Nonlinear equality constraints np

Nonlinear inequality constraints 0

Nonzeros in r2f(x) 9n2p
Nonzeros in c0(x) 3np

Performance

Results for the AMPL implementation are summarized in Table 2.2. The starting point is

a quasi-uniform distribution of the points on a unit sphere. The best solution for np = 100

is shown in Figure 2.1.
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Table 2.2: Performance on electrons on a sphere problem

Solver np = 25 np = 50 np = 100 np = 200

LANCELOT 3.98 s 8.08 s 53.36 s 371.6 s
f 2.43812e+02 1.05518e+03 4.44841e+03 1.84389e+04

c violation 2.34380e-06 2.58920e-08 2.32410e-07 1.94010e-06

iterations 50 46 67 127

LOQO 0.84 s 7.94 s 179.06 s 2437.78 s

f 2.43812e+02 1.05518e+03 4.44835e+03 1.84389e+04

c violation 2.8e-09 4.9e-09 3.0e-09 1.9e-09

iterations 27 46 130 264

MINOS 6.22 s 36.85 s z 794.08 s

f 2.43812e+02 1.05518e+03 z 1.25964e+04y

c violation 7.7e-08 1.2e-12 z 6.6e+09y
iterations 1273 1951 z 1480

SNOPT 9.65 s 10.68 s 73.66 s 1600.48 s
f 2.43812e+02 1.05518e+03 4.44841e+03 1.84390e+04

c violation 2.2e-09 1.8e-10 5.2e-10 9.0e-10

iterations 245 253 448 1171

y Errors or warnings. z Timed out.

MINOS cannot solve the problem for np > 50. For np = 200 it gives the error message

unbounded (or badly scaled) problem.

Figure 2.1: Optimal distribution of electrons on a sphere, np = 100
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3 Hanging Chain

Find the chain (of uniform density) of length L suspended between two points with minimal

potential energy.

Implementation

This classical problem (see Cesari [11, pages 126{127]) was suggested by Hans Mittelmann.

In this problem we need to determine a function x(t), the shape of the chain, that minimizes

the potential energy Z
1

0

x

p
1 + x02 dt

subject to the constraint on the length of the chain,Z
1

0

p
1 + x02 dt = L;

and the end conditions x(0) = a and x(1) = b. We reformulate this problem as a control

problem in terms of the function u = x
0. The optimal control version of the problem isZ
1

0

x

p
1 + u2 dt

subject to a di�erential equation and a constraint on the length of the chain,

x
0 = u;

Z
1

0

p
1 + u2 dt = L:

We discretize the integrals and the di�erential equation with the trapezoidal rule on a

uniform mesh with nh intervals. Data for this problem appears in Table 3.1.

Table 3.1: Hanging chain problem data

Variables 2nh
Constraints nh + 1

Bounds 0

Linear equality constraints nh
Linear inequality constraints 0

Nonlinear equality constraints 1

Nonlinear inequality constraints 0
Nonzeros in r2f(x) 3nh
Nonzeros in c0(x) 5nh

Performance

Results for the AMPL implementation are summarized in Table 3.2 with a = 1, b = 3, and

L = 4. The starting point is the quadratic

x(t) = (2jb� aj) t(t � 2tm) + a;
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where tm = 0:25 if b > a and tm = 0:75 otherwise, evaluated at the mesh points. This

choice is convex and satis�es the boundary data. The control function u is set to x
0. The

optimal chain is shown in Figure 3.1.

Table 3.2: Performance on hanging chain problem

Solver nh = 50 nh = 100 nh = 200 nh = 400

LANCELOT 13.91 s 42.79 s 268.7 s 577.24 s

f 5.07230e+00 5.07005e+00 5.06903e+00 5.06788e+00

c violation 3.31310e-06 9.61060e-06 2.01200e-06 6.25860e-06
iterations 772 1169 3042 3203

LOQO 17.24 s 6.69 s 174.58 s 1028.35 s

f 5.07226e+00 5.06978e+00 5.06891e+00 5.06862e+00

c violation 3.3e-08 7.3e-10 5.7e-10 2.4e-09

iterations 773 206 758 777

MINOS 1.22 s 5.52 s 14.75 s 73.9 s

f 5.07226e+00 5.06978e+00 5.06891e+00 5.06862e+00
c violation 6.1e-08 4.0e-07 2.5e-06 3.3e-06

iterations 428 765 1104 2312

SNOPT 5.72 s 32.76 s 52.8 s z

f 5.07226e+00 5.06978e+00 5.06891e+00 z

c violation 5.9e-09 5.2e-09 1.6e-06 z

iterations 265 451 487 z

y Errors or warnings. z Timed out.
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Figure 3.1: Hanging chain of length L = 4
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4 Shape Optimization of a Cam

Maximize the area of the valve opening for one rotation of a convex cam with constraints

on the curvature and on the radius of the cam.

Formulation

The formulation of this problem is due to Anitescu and Serban [1]. We assume that the

shape of the cam is circular over an angle of 6

5
� of its circumference, with radius rmin. The

design variables ri, i = 1; : : : ; n , represent the radius of the cam at equally spaced angles

distributed over an angle of 2

5
�. We maximize the area of the valve opening by maximizing

f(r) = �r
2
v

 
1

n

nX
i=1

ri

!

subject to the constraints on r. The design parameter rv is related to the geometry of the

valve. We also require that rmin � ri � rmax. The requirement that the cam be convex is

expressed by requiring that

area(ri�1; ri+1) � area(ri�1; ri) + area(ri; ri+1);

where area(ri; rj) is the area of the triangle de�ned by the origin and the points ri and rj

on the cam surface. This convexity constraint can also be expressed as

2ri�1ri+1 cos(�) � ri(ri�1 + ri+1); i = 0; : : : ; n+ 1;

where r�1 = r0 = rmin, rn+1 = rmax, rn+2 = rn and � = 2�=5(n + 1). The curvature

requirement is expressed by

�� �
�
ri+1 � ri

�

�
� �; i = 0; : : : ; n:

This is a departure from [1], where the curvature constraint was expressed in terms of

(ri+1 � ri)
2. Data for this problem appears in Table 4.1.

Table 4.1: Optimal design of a cam problem data

Variables n

Constraints 2n + 2

Bounds n

Linear equality constraints 0

Linear inequality constraints n + 1

Nonlinear equality constraints 0
Nonlinear inequality constraints n+ 1

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 5n

We follow [1] and use rmin = 1:0 and rmax = 2:0 for the bounds on r, rv = 1:0 in the

area of the valve, and � = 1:5 in the curvature constraint. Since the optimal cam shape

is symmetric, we consider only half of the design angle. The problem was originally [1]

formulated for the full angle of 4

5
�.
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Performance

Results for the AMPL implementation are summarized in Table 4.2. We use a starting

guess of ri � (rmin + rmax)=2. The cam shape for � = 1:5 appears in Figure 4.1. We note

that the number of active constraints increases with � up to a threshold of �1 � 3:0, after

which increasing � does not change the optimal solution.

Table 4.2: Performance on optimal cam shape problem

Solver n = 100 n = 200 n = 400 n = 800

LANCELOT 42.74 s 194.89 s 1025.23 s 1887.03 s

f 4.30178e+00y 4.35538e+00y 4.45009e+00y 4.85693e+00
c violation 4.50980e-06y 5.14160e-06y 3.22630e-06y 4.50740e-06

iterations 316 491 767 773

LOQO 0.68 s 1.51 s 4.65 s 12.47 s

f 4.28414e+00 4.27850e+00 4.27568e+00 4.27427e+00

c violation 2.1e-12 1.9e-11 2.3e-13 1.7e-12

iterations 63 73 113 117

MINOS 0.87 s 1.32 s 4.59 s 21.72 s
f 4.28414e+00 4.27850e+00 4.27567e+00y 4.27426e+00

c violation 4.4e-16 1.4e-14 9.3e-14y 3.0e-13

iterations 474 428 765 2416

SNOPT 0.6 s 1.79 s 6.48 s 25.17 s

f 4.28414e+00 4.27340e+00 4.27022e+00 4.23739e+00

c violation 1.3e-15 1.8e-07 2.3e-06 6.2e-07

iterations 312 584 1121 2235

y Errors or warnings. z Timed out.

LANCELOT stops prematurely with the message step got too small for n = 100; 200; 400;

and its solution for n = 800, while showing the best value, violates the problem constraints

to an extent obvious in a graph of the solution. MINOS quits for n = 400 because the

current point cannot be improved.

Figure 4.1: Cam shape for � = 1:5.
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5 Isometrization of �-pinene

Determine the reaction coe�cients in the thermal isometrization of �-pinene. The linear

kinetic model [6] is

y
0

1 = �(�1 + �2)y1
y
0

2 = �1y1

y
0

3 = �2y1 � (�3 + �4)y3 + �5y5 (5.1)

y
0

4 = �3y3

y
0

5 = �4y3 � �5y5;

where �i � 0 are the reaction coe�cients. Initial conditions for (5.1) are known. The

problem is to minimize
8X

j=1

ky(�j; �)� zjk2; (5.2)

where zj are concentration measurements for y at time points �1; : : : ; �8.

Formulation

Our formulation of the �-pinene problem as an optimization problem follows [21, 3]. We

use a k-stage collocation method, a uniform partition with nh subintervals of [0; �8], and

the standard [2, pages 247{249] basis representation,

vi +

kX
j=1

(t� ti)
j

j! hj�1
wij ; t 2 [ti; ti+1];

for the components of the solution y of (5.1). The constraints in the optimization problem

are the initial conditions in (5.1), the continuity conditions, and the collocation equations.

The continuity equations at each interior grid point are a set of 5(nh � 1) linear equations.

The collocation equations are a set of 5knh nonlinear equations obtained by requiring that

the collocation approximation satisfy (5.1) at the collocation points. Data for this problem

appears in Table 5.1.

Table 5.1: Isometrization of �-pinene data

Variables 5(k + 1)nh + 5

Constraints 5(k + 1)nh
Bounds 5

Linear equality constraints 5nh
Linear inequality constraints 0

Nonlinear equality constraints 5knh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 40(k + 1)2

Nonzeros in c0(x) 10k(k + 1)nh
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Performance

We provide results for the AMPL formulation with k = 3 in Table 5.2. The initial values

for the � parameters are �i = 0:0. The initial basis parameters are chosen so that the

collocation approximation is piecewise constant and interpolates the data. The solution

and data are shown in Figure 5.1.

Table 5.2: Performance on isometrization problem

Solver nh = 25 nh = 50 nh = 100 nh = 200

LANCELOT 1426.01 s 2720.49 s z z

f 1.96766e+01y 1.93937e+01y z z

c violation 1.87900e-06y 6.09920e-06y z z

iterations 305 179 z z

LOQO 28.85 s 6.15 s 6.77 s 16.87 s

f 1.98715e+01 1.98721e+01 1.98721e+01 1.98721e+01

c violation 1.3e-11 2.2e-13 7.6e-13 8.4e-13

iterations 389 32 23 21

MINOS 1.98 s 6.74 s 21.66 s 194.84 s
f 1.98715e+01 1.98721e+01 1.98721e+01 0.00000e+00y

c violation 4.2e-13 4.4e-13 2.3e-12 1.7e+04y

iterations 378 736 1354 3279

SNOPT 3.74 s 13.1 s 48.91 s 235.44 s

f 1.98715e+01 1.98721e+01y 1.98721e+01 1.98721e+01y

c violation 3.9e-13 4.2e-13y 6.7e-13 5.1e-13y

iterations 570 1072 2060 4087

y Errors or warnings. z Timed out.

LANCELOT stops with the message step got too small, near the solution for nh � 50.

MINOS fails completely on nh = 200 with unbounded (or badly scaled) problem, while

SNOPT manages a [p]rimal feasible solution, which could not satisfy dual feasibility for

both nh = 50; 200.
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Figure 5.1: Solution and data for the �-pinene problem
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6 Marine Population Dynamics

Given estimates of the abundance of the population of a marine species at each stage (for

example, nauplius, juvenile, adult) as a function of time, determine stage speci�c growth

and mortality rates. The model for the population dynamics of the ns-stage population is

y
0

j
= gj�1yj�1 � (mj + gj)yj ; 1 � j � ns; (6.1)

where mi and gi are the unknown mortality and growth rates at stage i with g0 = gns = 0.

This model assumes that the species eventually dies or grows into the next stage, with

the implicit assumption that the species cannot skip a stage. Initial conditions for the

di�erential equations are unknown, since the stage abundance measurements at the initial

time might also be contaminated with experimental error. We minimize the error between

computed and observed data,

nmX
j=1

ky(�j ;m; g)� zjk2;

where zj are the stage abundance measurements. This problem is based on the work of

Rothschild, Sharov, Kearsley, and Bondarenko [19].

Formulation

Our formulation of the marine population dynamics uses a k-stage collocation method, a

uniform partition with nh subintervals of [0; �nm], and the standard [2, pages 247{249] basis

representation,

vi +

kX
j=1

(t� ti)
j

j! hj�1
wij ; t 2 [ti; ti+1];

for the components of the solution y of (6.1). The constraints in the optimization problem

are the continuity conditions and the collocation equations. The continuity equations are a

set of ns(nh � 1) linear equations. The collocation equations are a set of k ns nh nonlinear

equations obtained by requiring that the collocation approximation satisfy (6.1) at the

collocation points �ij = ti + h�j for i = 1; : : : ; nh and j = 1; : : : ; k.

Table 6.1: Marine population dynamics problem data

Variables (k+ 1)nsnh + 2ns � 1

Constraints (k + 1)nsnh � ns
Bounds 2ns � 1

Linear equality constraints ns(nh � 1)

Linear inequality constraints 0
Nonlinear equality constraints knsnh

Nonlinear inequality constraints 0

Nonzeros in r2f(x) (k+ 1)2nsnm
Nonzeros in c0(x) (2k+ 1)(k + 2)nsnh
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The parameters in the problem are the nsnh initial conditions, the ns mortality rates,

the ns � 1 growth rates, and the (k + 1)nsnh basis parameters in the representation of the

collocation approximation. Data for this problem appears in Table 6.1.

We do not impose any initial conditions on the di�erential equations, since initial mea-

surements are usually contaminated with experimental error. Introducing these extra de-

grees of freedom into the problem formulation should allow solvers to �nd a better �t to

the data. A signi�cant di�erence between this problem and other parameter estimation

problems is that the population dynamics data usually contains large observation errors.

Performance

We provide results for the AMPL formulation with k = 2 in Table 6.2. We use a simulated

dataset with ns = 8 stages. The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data.

Table 6.2: Performance on marine population dynamics problem

Solver nh = 25 nh = 50 nh = 100 nh = 200

LANCELOT 623.75 s 1084.33 s 3170.26 s z

f 1.97522e+07y 1.97465e+07y 1.97465e+07y z

c violation 1.80930e-06y 3.27200e-06y 6.49480e-06y z

iterations 245 281 243 z

LOQO 2.07 s 4.64 s 12.53 s 38.4 s
f 1.97522e+07 1.97465e+07 1.97465e+07 1.97465e+07

c violation 5.3e-10 7.0e-10 5.8e-11 2.8e-10

iterations 25 25 27 27

MINOS 6.58 s 15.75 s 167.83 s 245.1 s

f 1.97522e+07 1.97465e+07 2.17862e+07 0.00000e+00y
c violation 4.5e-12 5.3e-11 4.2e-08 3.4e+05y

iterations 531 867 2761 2260

SNOPT 85.37 s 184.4 s 477.59 s 1502.26 s

f 1.97522e+07 1.97465e+07 1.97465e+07 1.97465e+07

c violation 4.5e-12 1.1e-11 7.3e-12 2.0e-11

iterations 1235 1800 3031 5563

y Errors or warnings. z Timed out.

LANCELOT returns the message step got too small for the values of nh for which

it terminates within 3; 600 wall-clock seconds. The intermediate solution returned by

LANCELOT upon termination is in close agreement with the optimal solutions returned

by the other solvers. MINOS makes no progress with nh = 200, returning with the error

unbounded (or badly scaled) problem.

The graph on the left of Figure 6.1 shows the populations for stages 1; 2; 5; and 6, while

the graph on the right shows the populations for stages 3; 4; 7; and 8. In both cases, the �t

between the model and the data is not always tight.

For this problem we are using a relatively small number of collocation points (k = 2),

since in this case the number of parameters grows quickly with the number of stages. The

quality of the solution does not seem to be a�ected, at least as measured by the population
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curves and the mortality and growth parameters.
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Figure 6.1: Marine populations for stages 1; 2; 5; 6 (left) and 3; 4; 7; 8 (right)

Figure 6.2 plots the mortality and growth parameters for the eight stages. Mortality

parameters are marked �, while growth parameters are marked �. The mortality parameters

for stages 5 and 6 are not zero, but they are on the order of 10�3 and 10�9, respectively.
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Figure 6.2: Mortality (�) and growth (�) parameters for the marine populations stages
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7 Flow in a Channel

Analyze the 
ow of a 
uid during injection into a long vertical channel, assuming that the


ow is modeled by the boundary value problem

u
0000 = R (u0u00 � uu

000) ; 0 � t � 1;

u(0) = 0; u(1) = 1; u
0(0) = u

0(1) = 0;
(7.1)

where u is the potential function, u0 is the tangential velocity of the 
uid, and R is the

Reynolds number.

Formulation

We use a k-stage collocation method to formulate this problem as an optimization problem

with a constant merit function and equality constraints representing the solution of (7.1).

We use a uniform partition with nh subintervals of [0; 1], and the standard [2, pages 247{249]

basis representation,

u(t) =

mX
j=1

(t� ti)
j�1

(j � 1)!
vij +

kX
j=1

(t � ti)
j+m�1

(j +m� 1)! hj�1
wij ; t 2 [ti; ti+1];

for u. Note that u 2 C
m�1[0; 1], where m = 4 is the order of the di�erential equation.

The constraints in the optimization problem are the initial conditions in (7.1), the

continuity conditions, and the collocation equations. There are m = 4 initial conditions.

The continuity equations are a set of m(nh� 1) linear equations. The collocation equations

are a set of k nh nonlinear equations obtained by requiring that u satisfy (7.1) at the

collocation points �ij = ti+h�j for i = 1; : : : ; nh and j = 1; : : : ; k. The collocation points �j
are the roots of the kth degree Legendre polynomial. The parameters in the optimization

problem are the (m+ k)nh parameters vij and wij in the representation of u. Data for this

problem appears in Table 7.1.

Table 7.1: Flow in a channel problem data

Variables (k+ 4)nh
Constraints (k+ 4)nh
Bounds 0

Linear equality constraints 4nh
Linear inequality constraints 0

Nonlinear equality constraints knh

Nonlinear inequality constraints 0
Nonzeros in r2f(x) 0

Nonzeros in c0(x) k(k + 8)nh

Performance

Results for the AMPL implementation with k = 4 and R = 10 are summarized in Table 7.2.

The starting point is the function t
2(3 � 2t) evaluated at the mesh points. Solutions for
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several R are shown in Figure 7.1. This problem is easy to solve for small Reynolds numbers

but becomes increasingly di�cult to solve as R increases.

Table 7.2: Performance on 
ow in channel problem

Solver nh = 50 nh = 100 nh = 200 nh = 400

LANCELOT z z z z

f z z z z

c violation z z z z

iterations z z z z

LOQO 1.55 s 2.59 s 7.03 s 22.54 s
f 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

c violation 5.1e-12 1.1e-11 2.9e-11 1.9e-11

iterations 32 25 29 35

MINOS 1.09 s 3.25 s 11.15 s 32.65 s

f 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00

c violation 3.8e-13 2.4e-13 2.0e-13 3.8e-07

iterations 151 301 601 999

SNOPT 2.14 s 7.47 s 27.91 s 98.5 s

f 1.00000e+00 1.00000e+00 1.00000e+00 1.00000e+00
c violation 6.1e-05 4.6e-05 4.1e-05 3.9e-05

iterations 398 798 1598 2994

y Errors or warnings. z Timed out.

LANCELOT is unable to solve even simple versions of the problem, advancing very

slowly toward the solution (as judged from the value of the merit function).
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Figure 7.1: Tangential velocity u
0 for Reynolds numbers R = 0; 102; 104
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8 Robot Arm

Minimize the time taken for a robot arm to travel between two points.

Formulation

This problem originated in the thesis of Monika M�ossner-Beigel (Heidelberg University). In

her formulation the arm of the robot is a rigid bar of length L that protrudes a distance

� from the origin to the gripping end and sticks out a distance L � � in the opposite

direction. If the pivot point of the arm is the origin of a spherical coordinate system, then

the problem can be phrased in terms of the length � of the arm from the pivot, the horizontal

and vertical angles (�; �) from the horizontal plane, the controls (u�; u�; u�), and the �nal

time tf . Bounds on the length and angles are

�(t) 2 [0; L]; j�(t)j � �; 0 � �(t) � �;

and for the controls,

ju�j � 1; ju�j � 1; ju�j � 1:

The equations of motion for the robot arm are

L�
00 = u�; I��

00 = u� ; I��
00 = u�; (8.1)

where I is the moment of inertia, de�ned by

I� =
((L� �)3 + �

3)

3
sin(�)2; I� =

((L� �)3 + �
3)

3
:

The boundary conditions are

�(0) = �(tf ) = 4:5; �(0) = 0; �(tf ) =
2�

3
; �(0) = �(tf ) =

�

4
;

�
0(0) = �

0(0) = �
0(0) = �

0(tf ) = �
0(tf) = �

0(tf ) = 0:

This model ignores the fact that the spherical coordinate reference frame is a noninertial

frame and should have terms for coriolis and centrifugal forces.

Implementation

In the implementation of Vanderbei [22] the controls u are eliminated by substitution, and

thus the equality constraints in (8.1) become the inequalities

jL�00j � 1; jI��00j � 1; jI��00j � 1:

In this implementation (8.1) is expressed in terms of a �rst-order system with the additional

variables �0, �0, and �
0. Discretization is done with a uniform time step and the trapezoidal

rule over nh intervals. Data for this problem is shown in Table 8.1.
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Table 8.1: Robot arm problem data

Variables 9(nh + 1) + 1

Constraints 6nh
Bounds 6(nh + 1)
Linear equality constraints 0

Linear inequality constraints 0

Nonlinear equality constraints 6nh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 36nh

Performance

Results for the AMPL implementation appear in Table 8.2. All solvers were given the same

initial values. The initial values for � and � were set to the functions � � 4:5 and � � �=4

evaluated at the grid points. Similarly, initial values for � were set to the discrete version

of the parabola

�(t) =
2�

3

�
t

tf

�2

;

which matches three of the boundary conditions. The initial values for all the controls were

set to zero, and tf = 1 initially.

Table 8.2: Performance on robotic arm problem

Solver nh = 50 nh = 100 nh = 200 nh = 400

LANCELOT 0.47 s 0.53 s 1.2 s 2.59 s

f 0.00000e+00y -2.77555e-17y -2.77555e-17y -2.77555e-17y

c violation 4.18880e-02y 2.09440e-02y 1.04720e-02y 5.23600e-03y

iterations 5 3 3 3

LOQO 1.03 s 2.77 s z z

f 9.14687e+00 9.14267e+00 z z

c violation 2.4e-10 4.7e-11 z z

iterations 24 30 z z

MINOS 2.82 s 9.89 s 37.96 s 161.18 s

f 9.14687e+00 9.14267e+00 9.14138e+00 9.14108e+00

c violation 2.0e-13 1.0e-10 2.7e-12 5.7e-13

iterations 234 427 766 1368

SNOPT 10.22 s 30.7 s 317.52 s 2671.63 s

f 9.14687e+00 1.92751e+01y 9.14142e+00 9.14101e+00
c violation 1.9e-10 3.4e-04y 1.4e-10 2.1e-10

iterations 891 1987 2597 5255

y Errors or warnings. z Timed out.
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LANCELOT reports that it could not �nd a feasible solution for any of the versions

we try for this implementation. For nh = 100, SNOPT encounters di�culties, which it

describes as an error evaluating nonlinear expressions.

Figure 8.1 shows the variables �, �, � for the robot arm as a function of time. We also

show in Figure 8.2 the controls u�, u� , u� as a function of time. Note that the controls for

the robot arm are bang-bang. Also note that the functions �, �, � for the robot arm are

continuously di�erentiable, but since the second derivatives are directly proportional to the

controls, the second derivatives are piecewise continuous.
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Figure 8.1: Variables �, �, � for the robot arm as a function of time
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Figure 8.2: Control variables u�, u�, u� for the robot arm as a function of time
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9 Particle Steering

Minimize the time taken for a particle, acted upon by a thrust of constant magnitude, to

achieve a given altitude and terminal velocity.

Formulation

The equations of motion are

�y1 = a cos(u); �y2 = a sin(u); (9.1)

where (y1; y2) is the position of the particle, u is the control angle with

ju(t)j � �

2
;

and a is the constant magnitude of thrust. The particle is initially at rest so that

y1(0) = y2(0) = _y1(0) = _y2(0) = 0:

The problem is to minimize the travel time tf so that the particle achieves a given height

y2(tf ) and terminal velocity ( _y1(tf ); _y2(tf)).

This is a classical (see Bryson and Ho [7, pages 59{62]) problem in dynamic optimization.

We use a = 100 for the magnitude of thrust and the boundary conditions [4]

y2(tf ) = 5; _y1(tf ) = 45; _y2(tf) = 0:

Discretization is done using a uniform time step and the trapezoidal rule for the integration

of the system over nh intervals. Data for this problem is shown in Table 9.1.

Table 9.1: Particle steering problem data

Variables 5(nh + 1) + 1

Constraints 4nh
Bounds nh + 1

Linear equality constraints 0

Linear inequality constraints 0

Nonlinear equality constraints 4nh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 20nh

Performance

Results for the AMPL implementation are given in Table 9.2. The initial values for y2 and

y3 = _y1 are chosen as the functions

y1(t) = 5

�
t

tf

�
; y3(t) = 45

�
t

tf

�
:
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Table 9.2: Performance on particle steering problem

Solver nh = 50 nh = 100 nh = 200 nh = 400

LANCELOT 30.83 s 124.62 s 412.89 s 2997.88 s
f 5.54672e-01 5.54594e-01 5.54588e-01 5.54552e-01y

c violation 2.69440e-06 1.94910e-06 6.12610e-06 8.56120e-06y

iterations 366 416 410 575

LOQO 923.3 s z z z

f 5.54668e-01 z z z

c violation 4.1e-10 z z z

iterations 20163 z z z

MINOS 1.58 s 5.62 s 27.86 s 143.09 s

f 5.54668e-01 5.54595e-01 5.54577e-01 5.54572e-01

c violation 2.5e-13 1.1e-08 2.4e-13 7.9e-10
iterations 278 505 1129 2706

SNOPT 3.25 s 13.43 s 53.81 s 147.37 s
f 5.54668e-01 5.54595e-01 5.54577e-01 5.54573e-01

c violation 5.7e-08 1.9e-09 6.8e-09 5.4e-07

iterations 505 650 1246 2386

y Errors or warnings. z Timed out.

Initial values for y2, y4 = _y2; and u are set to zero. The initial value for the �nal time is

tf = 1. Plots of the height y2 and control u as a function of the horizontal position y1 are

in Figure 9.1.

Only LANCELOT returns an error here, for nh = 400, of step got too small. Even so,

it comes near to the optimal solution value.
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Figure 9.1: Height and control as a function of position for the particle steering problem
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10 Goddard Rocket

Maximize the �nal altitude of a vertically launched rocket, using the thrust as a control

and given the initial mass, the fuel mass, and the drag characteristics of the rocket.

Formulation

This is a classical problem in dynamic optimization that is typical of control problems with

a singular arc. See Bryson [8, pages 302{394] for background information. The equations

of motion for the rocket are

h
0 = v; v

0 =
T �D(h; v)

m
� g(h); m

0 = �T

c
; (10.1)

where h is the altitude from the center of the earth, v is the vertical velocity, T is the rocket

thrust, D is the aerodynamic drag, g is the gravitational force, and c is a constant that

measures the impulse of the rocket fuel. The thrust must satisfy

0 � T (t) � Tmax:

The drag and the gravitational force are de�ned by

D(h; v) = 1

2
Dcv

2 exp

�
�hc

�
h � h(0)

h(0)

��
; g(h) = g0

�
h(0)

h

�2

;

where Dc and hc are constants, and g0 is the gravitational force at the earth's surface. The

rocket is initially at rest (v(0) = 0), and the mass at the end of the 
ight is a fraction of

the initial mass,

m(tf ) = mcm(0);

where tf is the 
ight time and mc is a constant. In addition to the bounds on the thrust,

there are bounds

m(tf) � m(t) � m(0); h(t) � h(0); v(t) � 0;

on the mass, altitude, and velocity of the rocket. These bounds are a direct consequence of

the equations of motion (10.1).

The equations of motion can be made dimension free by scaling the equations and

choosing the model parameters in terms of h(0), m(0), and g0. We follow [8] and use

Tmax = 3:5 g0m(0); Dc = vc
m(0)

g0
; c = 1

2
(g0h(0))

1=2
:

With these choices we can assume, without loss of generality, that h(0) = m(0) = g0 = 1.

We also follow [8] and choose

hc = 500; mc = 0:6; vc = 620:

We discretize the equations of motion with the trapezoidal rule, and a uniform mesh with

nh intervals. Data for this problem appears in Table 10.1.
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Table 10.1: Goddard rocket problem data

Variables 4(nh + 1) + 1

Constraints 3nh
Bounds 3(nh + 1)
Linear equality constraints 0

Linear inequality constraints 0

Nonlinear equality constraints 3nh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 21nh

Performance

Results for the AMPL implementation are shown in Table 10.2. For starting points we use

tf = 1 and the functions h = 1,

v(t) =
t

tf

�
1� t

tf

�
; m(t) = (mf �m0)

�
t

tf

�
+m0;

evaluated at the grid points. The initial value for the thrust is T = Tmax=2.

For the rocket problem with nh = 200; 400, MINOS makes no progress, declaring it to

be an unbounded (or badly scaled) problem.

Table 10.2: Performance on Goddard rocket problem

Solver nh = 50 nh = 100 nh = 200 nh = 400

LANCELOT z z z z

f z z z z

c violation z z z z

iterations z z z z

LOQO 3.34 s 3.38 s 4.65 s 12.42 s

f 1.01281e+00 1.01283e+00 1.01283e+00 1.01283e+00

c violation 2.1e-10 4.5e-10 8.2e-10 7.5e-10
iterations 123 64 43 48

MINOS 1.69 s 4.48 s 1.12 s 3.93 s
f 1.01280e+00 1.01278e+00 9.85326e+03y 6.11246e+03y

c violation 4.8e-13 6.1e-16 3.6e+03y 1.1e+03y

iterations 638 378 191 334

SNOPT 3.04 s 9.5 s 31.5 s 64.48 s

f 1.01281e+00 1.01280e+00 1.01281e+00 1.01238e+00
c violation 1.9e-09 4.1e-08 3.5e-09 5.2e-07

iterations 1014 2047 1658 2665

y Errors or warnings. z Timed out.

Figure 10.1 shows the altitude and mass of the rocket as a function of time. Note that

altitude increases until a maximum altitude of h = 1:01 is reached, while the mass of the

rocket steadily decreases until the �nal mass of m(tf) = 0:6 is reached at t = 0:073.
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Figure 10.2 shows the velocity and thrust as a function of time. The thrust is bang-

singular-bang, with the region of singularity occurring when

0 < T (t) < Tmax:

This �gure shows that the optimal 
ight path involves using maximal thrust until t = 0:022,

and no thrust for t � 0:073, at which point the �nal mass is reached, and the rocket coasts

to its maximal altitude. The oscillations that appear at the point of discontinuity in the

thrust parameter can be removed by using more grid points.
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Figure 10.1: Altitude and mass for the Goddard rocket problem
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Figure 10.2: Velocity and thrust for the Goddard rocket problem
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11 Hang Glider

Maximize the �nal horizontal position of a hang glider while in the presence of a thermal

updraft.

Formulation

The formulation of this problem follows [9]. The equations of motion for the hang glider

are

x
00 =

1

m
(�L sin(�)�D cos(�)); y

00 =
1

m
(L cos(�)�D sin(�))� g; (11.1)

where (x; y) is the position of the glider, m is the mass of the glider, g is the gravitational

constant, and the function � is de�ned by

sin(�) =
w(x; y0)

v(x; x0; y0)
; cos(�) =

x
0

v(x; x0; y0)
;

where

v(x; x0; y0) =
p
x02 + w(x; y0)2; w(x; y0) = y

0 � u(x);

u(x) = uc(1� r(x)) exp(�r(x)); r(x) =

�
x

rc
� 2:5

�2
;

and constants uc = 2:5 and rc = 100. The updraft function u is positive in a neighborhood

of x = 2:5 rc but drops to zero exponentially away from x = 2:5 rc. The functions D and L

are de�ned by

D(x; x0; y0; cL) =
1

2

�
c0 + c1c

2
L

�
�Sv(x; x0; y0)2; L(x; x0; y0; cL) =

1

2
cL�Sv(x; x

0
; y
0)2;

where S is the wing area, � is the air density, cL is the aerodynamic lift coe�cient, and

c0 + c1c
2
L
is the drag coe�cient. For this glider

c0 = 0:034; c1 = 0:069662; S = 14; � = 1:13:

The aerodynamic lift coe�cient cL must satisfy the bounds

0 � cL(t) � cmax;

and we also impose the natural bounds x � 0 and x
0 � 0. In this problem cmax = 1:4,

m = 100, g = 9:81, and the boundary conditions are

x(0) = 0; y(0) = 1000; y(tf ) = 900;

x
0(0) = x

0(tf ) = 13:23; y
0(0) = y

0(tf ) = �1:288:
Discretization is done with a uniform time step and the trapezoidal rule over nh intervals.

Data for this problem is shown in Table 11.1.
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Table 11.1: Hang glider problem data

Variables 5(nh + 1) + 1

Constraints 4nh
Bounds 3(nh + 1)
Linear equality constraints 0

Linear inequality constraints 0

Nonlinear equality constraints 4nh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 25nh

Performance

Results for the AMPL implementation are shown in Table 11.2. For starting points we use

tf = 1 and the functions x0 = x
0(0), y0 = y

0(0), and

x(t) = x(0) + x
0(0)

�
t

tf

�
; y(t) = y(0) + (y(tf)� y(0))

�
t

tf

�
;

evaluated at the grid points. The initial value for the control is cL(t) = cmax.

MINOS fails to produce a solution for any of the problem versions we present it, declaring

each an infeasible problem (or bad starting guess).

Table 11.2: Performance on hang glider problem

Solver nh = 50 nh = 100 nh = 200 nh = 400

LANCELOT z 211.76 s 693.74 s z

f z 1.25461e+03 1.24889e+03 z

c violation z 9.32090e-08 2.86060e-07 z

iterations z 383 539 z

LOQO z 2174.8 s 2601.83 s z

f z 1.25461e+03 1.24880e+03 z

c violation z 2.1e-11 1.6e-12 z

iterations z 14257 7206 z

MINOS 28.06 s 95.8 s 206.62 s 732.06 s

f 2.12853e+04y 4.55001e+05y 7.47275e+03y 5.93037e+03y

c violation 3.2e+03y 6.0e+06y 6.4e+02y 6.1e+02y

iterations 8959 16538 14768 23488

SNOPT 11.14 s 44.04 s 240.36 s 1268.67 s
f 1.28239e+03 1.25461e+03 1.24889e+03 1.24797e+03

c violation 1.7e-10 1.8e-10 1.2e-11 5.1e-11

iterations 1764 3001 7906 13286

y Errors or warnings. z Timed out.

Figure 11.1 shows the altitude and control function cL as a function of time. The glider

starts at an altitude of y(0) = 1000 and descends until the glider meets the updraft centered

at x = 250. As a result the glider climbs and then descends to the desired �nal altitude of

y(tf ) = 900 at time tf = 105.

27



0 20 40 60 80 100 120
900

910

920

930

940

950

960

970

980

990

1000

0 20 40 60 80 100 120
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 11.1: Altitude and control cL for the hang glider problem

Figure 11.2 shows velocities x
0 and y

0 as a function of time. Note, in particular, the

erratic behavior of the velocities while the control is in the bang-region where cL(t) = cmax.
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Figure 11.2: Velocities x0 and y
0 for the hang glider problem
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12 Catalytic Cracking of Gas Oil

Determine the reaction coe�cients for the catalytic cracking of gas oil into gas and other

byproducts. The nonlinear model [21] that describes the process is

y
0

1 = �(�1 + �3)y
2
1 (12.1)

y
0

2 = �1y
2
1 � �2y2

with coe�cients �i � 0 for i = 1; : : : ; 3. Initial conditions for (12.1) are known. The problem

is to minimize
20X
j=1

ky(�j; �)� zjk2;

where zj are concentration measurements for y at time points �1; : : : ; �20.

Formulation

Our formulation of the catalytic cracking of gas oil problem as an optimization problem

follows [21, 3]. We use a k-stage collocation method, a uniform partition of the interval

[0; �20] with nh intervals, and the standard [2, pages 247249] basis representation,

vi +

kX
j=1

(t� ti)
j

j! hj�1
wij ; t 2 [ti; ti+1];

for the components of the solution (y1; y2) of (12.1). The constraints in the optimization

problem are the initial conditions in (12.1), the continuity conditions, and the collocation

equations. The continuity equations are a set of 2(nh� 1) linear equations. The collocation

equations are a set of 2knh nonlinear equations obtained by requiring that the collocation

approximation satisfy (12.1) at the collocation points. Data for this problem appears in

Table 12.1.

Table 12.1: Catalytic cracking of gas oil data

Variables 2(k + 1)nh + 3

Constraints 2(k + 1)nh
Bounds 3
Linear equality constraints 2nh
Linear inequality constraints 0

Nonlinear equality constraints 2knh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 40k2

Nonzeros in c0(x) 3k(k + 1)nh

Performance

We provide results for the AMPL formulation with k = 4 in Table 12.2. The initial values for

the � parameters are �i = 0:0. The initial basis parameters are chosen so that the collocation
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approximation is piecewise constant and interpolates the data. Data is generated by solving

(12.1) numerically using the Tjoa and Biegler [21] values � = (12; 8; 2) and applying a

relative random perturbation of size 10�1. Figure 12.1 shows the solution and the data.

Table 12.2: Performance on catalytic cracking of gas oil problem

Solver nh = 50 nh = 100 nh = 200 nh = 400

LANCELOT 918.28 s 3502.88 s z z

f 5.23633e-03 5.23471e-03 z z

c violation 2.51920e-07 6.72780e-07 z z

iterations 575 993 z z

LOQO 1.37 s 3.36 s 11.6 s 49.62 s

f 5.23664e-03 5.23659e-03 5.23659e-03 5.23659e-03

c violation 2.8e-09 1.8e-09 1.9e-09 1.1e-09

iterations 21 22 31 43

MINOS 5.04 s 14.66 s 49.56 s 161.99 s

f 5.23664e-03 5.23659e-03 5.23659e-03 5.23659e-03
c violation 2.5e-10 9.3e-12 1.3e-08 5.9e-09

iterations 332 550 926 1456

SNOPT 5.25 s 14.41 s 48.56 s 179.71 s

f 5.23664e-03 5.23659e-03 5.23659e-03 5.23659e-03

c violation 2.0e-10 1.4e-08 2.2e-08 4.2e-07

iterations 550 1125 2198 4199

y Errors or warnings. z Timed out.
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Figure 12.1: Solution and data for the catalytic cracking of gas oil problem
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13 Methanol to Hydrocarbons

Determine the reaction coe�cients for the conversion of methanol into various hydrocarbons.

The nonlinear model [12, 17] that describes the process is

y
0

1 = �
�
2�2 �

�1y2

(�2 + �5)y1 + y2
+ �3 + �4

�
y1

y
0

2 =
�1y1(�2y1 � y2)

(�2 + �5)y1 + y2
+ �3y1 (13.1)

y
0

3 =
�1y1(y2 + �5y1)

(�2 + �5)y1 + y2
+ �4y1

with coe�cients �i � 0 for i = 1; : : : ; 5. Initial conditions for (13.1) are known. The problem

is to minimize
16X
j=1

ky(�j; �)� zjk2;

where zj are concentration measurements for y at time points �1; : : : ; �16.

Formulation

Our formulation of the methanol-to-hydrocarbons problem as an optimization problem fol-

lows [21, 3]. We use a k-stage collocation method, a uniform partition of the interval [0; �16]

with nh intervals, and the standard [2, pages 247-249] basis representation,

vi +

kX
j=1

(t� ti)
j

j! hj�1
wij ; t 2 [ti; ti+1];

for the components of the solution (y1; y2; y3) of (13.1). The constraints in the optimization

problem are the initial conditions in (13.1), the continuity conditions, and the collocation

equations. The continuity equations are a set of 3(nh� 1) linear equations. The collocation

equations are a set of 3knh nonlinear equations obtained by requiring that the collocation

approximation satisfy (13.1) at the collocation points. Data for this problem appears in

Table 13.1.

Table 13.1: Methanol-to-hydrocarbons data

Variables 3(k + 1)nh + 5

Constraints 3(k + 1)nh
Bounds 5
Linear equality constraints 3nh
Linear inequality constraints 0

Nonlinear equality constraints 3knh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 48k2

Nonzeros in c0(x) 7k(k + 1)nh
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Performance

We provide results for the AMPL formulation with k = 3 in Table 13.2. The initial values for

the � parameters are �i = 1:0. The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data. Data is generated by solving

(13.1) numerically using � = (2:69; 0:5; 3:02; 0:5; 0:5) as given in Maria [17] and applying a

relative random perturbation of size 10�1. Figure 13.1 shows the solution and the data.

Table 13.2: Performance on methanol-to-hydrocarbons problem

Solver nh = 50 nh = 100 nh = 200 nh = 400

LANCELOT 196.62 s 1792.75 s z z

f 9.02300e-03 9.00563e-03 z z

c violation 4.92130e-06 4.78630e-06 z z

iterations 251 622 z z

LOQO 2.13 s 5.45 s 18.78 s 45.2 s

f 9.02229e-03 9.02229e-03 9.02229e-03 9.02229e-03

c violation 3.5e-07 4.7e-08 1.7e-07 1.9e-08

iterations 19 21 30 26

MINOS 5.05 s 13.49 s 41.83 s 263.67 s
f 9.02228e-03 9.02229e-03 9.02228e-03 9.02228e-03

c violation 9.2e-13 9.8e-13 4.4e-12 3.5e-13

iterations 508 924 1432 2942

SNOPT 12.92 s 32.38 s 131.99 s 512.16 s

f 9.02228e-03 9.02229e-03 9.02228e-03 9.02228e-03
c violation 6.8e-09 9.8e-11 1.6e-09 1.3e-09

iterations 690 1298 2479 4983

y Errors or warnings. z Timed out.
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Figure 13.1: Solution and data for the methanol-to-hydrocarbons problem

32



14 Catalyst Mixing

Determine the optimal mixing policy of two catalysts along the length of a tubular plug


ow reactor involving several reactions.

Formulation

The nonlinear model [23] that describes the reactions is

x
0

1(t) = u(t)(10x2(t)� x1(t)) (14.1)

x
0

2(t) = u(t)(x1(t)� 10x2(t))� (1� u(t))x2(t):

Initial conditions for (14.1) are x1(0) = 1 and x2(0) = 0. The control variable u represents

the mixing ratio of the catalysts and must satisfy the bounds

0 � u(t) � 1:

The problem is to minimize

�1 + x1(tf ) + x2(tf ); (14.2)

where the �nal time is �xed at tf = 1.

We discretize the control and state variables along a uniform mesh with nh intervals

and with the standard trapezoidal rule. Data for this problem appears in Table 14.1.

Table 14.1: Catalyst mixing data

Variables 3(nh + 1)
Constraints 2nh
Bounds nh + 1

Linear equality constraints 0
Linear inequality constraints 0

Nonlinear equality constraints 2nh
Nonlinear inequality constraints 0
Nonzeros in r2f(x) 0

Nonzeros in c0(x) 12nh

Performance

Results for the AMPL implementation are shown in Table 14.2. For starting points we use

u = 0, x1 = 1, and x2 = 0 evaluated at the grid points.

The catalyst mixing problem is a typical bang-singular-bang problem. The singularity

leads to nonunique values of the control in the singular region, and thus it is possible to

obtain di�erent values for the control. Figure 14.1 shows the controls obtained by two

di�erent solvers.

The results in Table 14.2 show that all the solvers are successful for nh � 100 but that

the objective function value 
uctuates somewhat. This is probably due to the bang-singular-

bang nature of the problem. The most common approach to dealing with singular control
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Table 14.2: Performance on catalyst mixing problem

Solver nh = 100 nh = 200 nh = 400 nh = 800

LANCELOT 7.71 s 31.74 s 87.26 s 424.61 s
f -4.77480e-02 -4.80163e-02 -4.78620e-02 -4.71856e-02

c violation 9.31890e-06 1.03790e-06 2.09770e-06 3.95740e-06

iterations 75 97 100 104

LOQO 0.66 s 1.37 s 3.1 s 8.25 s

f -4.80694e-02 -4.80591e-02 -4.80565e-02 -4.80559e-02

c violation 7.0e-08 6.4e-08 1.2e-08 1.2e-08

iterations 24 24 24 25

MINOS 2.39 s 5.54 s 5.34 s 17.88 s

f -4.80605e-02 -4.80302e-02 -4.79881e-02 -4.74787e-02

c violation 2.2e-16 2.2e-16 1.1e-16 1.1e-16
iterations 238 225 105 182

SNOPT 3.99 s 17.32 s 78.72 s 181.24 s
f -4.80579e-02 -4.80471e-02 -4.80429e-02 -4.80451e-02

c violation 1.8e-08 1.8e-07 3.5e-08 2.0e-05

iterations 369 712 1368 2539

y Errors or warnings. z Timed out.

problems is to add a penalty to the objective function that leads to a smooth control, for

example,

�

Z
1

0

u
0(t)2 dt

for some positive value of �. Values of � � 1 seems to work well for this problem, but an

appropriate value is di�cult to �nd.
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Figure 14.1: Controls obtained by two di�erent solvers for the catalyst mixing problem
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15 Elastic-Plastic Torsion

Determine the stress potential in an in�nitely long cylinder when torsion is applied.

Formulation

The elastic-plastic torsion problem [15, pages 41{46] can be formulated in terms of the

cross-section D of the cylinder, and the torsion angle c per unit length. The stress potential

u minimizes the quadratic q : K 7! R,

q(v) =

Z
D

�
1

2
krv(x)k2� c v(x)

�
dx;

over the convex set K, where

K = fv 2 H
1
0 (D) : jvj � dist(x; @D); x 2 Dg;

dist(x; @D) is the distance from x to the boundary of D, and H1
0(D) is the space of functions

with gradients in L
2(D) that vanish on the boundary of D.

A �nite element approximation to the elastic-plastic torsion problem is obtained by

triangulating D and minimizing q over the space of piecewise linear functions with values

vi;j at the vertices of the triangulation. We follow [15, 3] by choosing D = [0; 1]� [0; 1], and

using a triangulation with, respectively, nx and ny internal grid points in the coordinate

directions. Data for this problem appears in Table 15.1.

Table 15.1: Elastic-plastic torsion problem data

Variables nxny

Constraints 0

Bounds nxny
Linear equality constraints 0

Linear inequality constraints 0

Nonlinear equality constraints 0
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 5nxny � 2(nx + ny)

Nonzeros in c0(x) 0

Performance

We provide results for the AMPL formulation with c = 5 in Table 15.2. For these results

we �x nx = 50 and vary ny . The starting guess is the function dist(x; @D) evaluated at the

grid nodes. Figure 15.1 shows the potential in the torsion problem with c = 5. The number

of active constraints in this problem increases with c. Also

lim
c!1

vc(x) = dist(x; @D);

where vc is the potential as a function of c.
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Table 15.2: Performance on elastic-plastic torsion problem

Solver ny = 25 ny = 50 ny = 75 ny = 100

LANCELOT 3.01 s 7.1 s 11.85 s 17.19 s
f -4.17510e-01 -4.18087e-01 -4.18199e-01 -4.18239e-01

c violation 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

iterations 14 18 19 21

LOQO 2.99 s 6.94 s 11.55 s 15.86 s

f -4.17510e-01 -4.18087e-01 -4.18199e-01 -4.18239e-01

c violation 1.9e-15 1.7e-14 3.3e-15 3.7e-15

iterations 19 19 21 21

MINOS 108.31 s 830.16 s 2758.52 s z

f -4.17510e-01 -4.18087e-01 -4.18199e-01 z

c violation 0.0e+00 0.0e+00 0.0e+00 z

iterations 910 1775 2656 z

SNOPT 125.58 s 1207.62 s z z

f -4.17510e-01 -4.18087e-01 z z

c violation 0.0e+00 0.0e+00 z z

iterations 1137 2446 z z

y Errors or warnings. z Timed out.
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Figure 15.1: Elastic plastic torsion problem with c = 5
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16 Journal Bearing

Given the eccentricity � of the journal bearing, �nd the pressure distribution in the lubricant

separating the shaft from the bearing.

Formulation

The journal bearing problem [10] requires determining the pressure between two circular

cylinders of length L and radii R and R + c. The separation between the cylinders is "c,

where " is the eccentricity. The pressure v minimizes the quadratic q : K 7! R,

q(v) =

Z
D

�
1

2
wq(x)krv(x)k2� wl(x)v(x)

�
dx;

over the convex set K, where D = (0; 2�)� (0; 2b),

K = fv 2 H
1
0(D) : v � 0g;

H
1
0 (D) is the space of functions with gradients in L

2(D) that vanish on the boundary of D,
and the functions wq : D 7! R and wl : D 7! R are de�ned by

wq(�1; �2) = (1 + " cos �1)
3
; wl(�1; �2) = " sin �1;

with " 2 (0; 1) the eccentricity of the bearing.

A �nite element approximation to the journal bearing problem is obtained by triangu-

lating D and minimizing q over the space of piecewise linear functions with values vi;j at

the vertices of the triangulation. We follow [3] by using a triangulation with, respectively,

nx and ny internal grid points in the coordinate directions. Data for this problem appears

in Table 16.1.

Table 16.1: Journal bearing problem data

Variables nxny
Constraints 0

Bounds nxny

Linear equality constraints 0

Linear inequality constraints 0

Nonlinear equality constraints 0

Nonlinear inequality constraints 0

Nonzeros in r2f(x) 5nxny � 2(nx + ny)

Nonzeros in c0(x) 0

Performance

We provide results with the AMPL formulation in Table 16.2 with b = 10 and � = 0:1. For

these results we �x nx = 50 and vary ny . The starting guess is the function maxfsin(x); 0g
evaluated at the grid nodes. Figure 16.1 shows the pressure distribution for the journal

bearing problem.

37



Table 16.2: Performance on pressure in journal bearing problem

Solver ny = 25 ny = 50 ny = 75 ny = 100

LANCELOT 3.02 s 7.19 s 11.77 s 17.89 s
f -1.54015e-01 -1.54824e-01 -1.54984e-01 -1.55042e-01

c violation 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

iterations 12 11 10 10

LOQO 3.36 s 5.71 s 9.56 s 13.33 s

f -1.54015e-01 -1.54824e-01 -1.54984e-01 -1.55042e-01

c violation 2.2e-16 3.1e-16 3.7e-16 4.2e-16

iterations 26 19 20 21

MINOS 173.65 s 964.59 s 2850.41 s z

f -1.54015e-01 -1.54824e-01 -1.54984e-01 z

c violation 0.0e+00 0.0e+00 0.0e+00 z

iterations 1340 2258 2988 z

SNOPT 722.68 s z z z

f -1.54015e-01 z z z

c violation 0.0e+00 z z z

iterations 3274 z z z

y Errors or warnings. z Timed out.
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Figure 16.1: Journal bearing problem with � = 0:1
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17 Minimal Surface with Obstacle

Find the surface with minimal area, given boundary conditions, and above an obstacle.

Formulation

Plateau's problem is to determine the surface of minimal area with a given closed curve

in R3 as boundary. We assume that the surface can be represented in nonparametric form

v : R2 7! R, and we add the requirement that v � vL for some obstacle vL. The solution of

this obstacle problem [13] minimizes the function f : K 7! R,

f(v) =

Z
D

�
1 + krv(x)k2

�1=2
dx;

over the convex set K, where

K =
�
v 2 H

1(D) : v(x) = vD(x) for x 2 @D; v(x) � vL(x) for x 2 D
	
;

H
1(D) is the space of functions with gradients in L

2(D), the function vD : @D 7! R de�nes

the boundary data, and vL : D 7! R is the obstacle. We assume that vL � vD on the

boundary @D.
A �nite element approximation to the minimal surface problem is obtained by triangu-

lating D and minimizing f over the space of piecewise linear functions with values vi;j at the

vertices of the triangulation. We set D = [0; 1]� [0; 1] and use a triangulation with, respec-

tively, nx and ny internal grid points in the coordinate directions. Data for this problem

appears in Table 16.1.

Table 17.1: Minimal surface problem data

Variables nxny

Constraints 0

Bounds nxny

Linear equality constraints 0

Linear inequality constraints 0

Nonlinear equality constraints 0

Nonlinear inequality constraints 0

Nonzeros in r2f(x) 5nxny � 2(nx + ny)

Nonzeros in c0(x) 0

Performance

We provide results for the AMPL formulation in Table 17.2. For these results we �x nx = 50

and vary ny . The starting guess is the function 1 � (2x� 1)2 evaluated at the grid nodes.

We used boundary data

vD(x; y) =

�
1� (2x� 1)2, y = 0; 1

0, otherwise,
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and the obstacle

vL(x; y) =

�
1 if jx� 1

2
j � 1

4
; jy � 1

2
j � 1

4

0, otherwise.

Figure 17.1 shows the minimal surface for this data.

Table 17.2: Performance on minimal surface area with obstacle problem

Solver ny = 25 ny = 50 ny = 75 ny = 100

LANCELOT 2.77 s 5.9 s 10.34 s 16.33 s

f 2.51948e+00 2.51488e+00 2.50568e+00 2.50694e+00

c violation 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

iterations 8 9 10 13

LOQO 2.98 s 9.76 s 23.32 s z

f 2.51948e+00 2.51488e+00 2.50568e+00 z

c violation 2.4e-15 3.8e-15 3.4e-15 z

iterations 20 28 46 z

MINOS 103.76 s 984.81 s z z

f 2.51948e+00 2.51488e+00 z z

c violation 0.0e+00 0.0e+00 z z

iterations 901 1970 z z

SNOPT 137.88 s z z z

f 2.51948e+00 z z z

c violation 0.0e+00 z z z

iterations 1001 z z z

y Errors or warnings. z Timed out.
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Figure 17.1: Minimal surface problem with a plate obstacle
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