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ABSTRACT
Java is quickly becoming the preferred language for writ-
ing distributed applications because of its inherent support
for programming on distributed platforms. In particular,
Java provides compile-time and run-time security, automatic
garbage collection, inherent support for multithreading, sup-
port for persistent objects and object migration, and porta-
bility. Given these signi�cant advantages of Java, there is a
growing interest in using Java for high-performance comput-
ing applications. To be successful in the high-performance
computing domain, however, Java must have the capability
to e�ciently handle the signi�cant I/O requirements com-
monly found in high-performance computing applications.

While there has been signi�cant research in high-performance
I/O using languages such as C, C++, and Fortran, there
has been relatively little research into the I/O capabilities
of Java. In this paper, we evaluate the I/O capabilities of
Java for high-performance computing. We examine several
approaches that attempt to provide high-performance I/O|
many of which are not obvious at �rst glance|and investi-
gate their performance in both parallel and multithreaded
environments. We also provide suggestions for expanding
the I/O capabilities of Java to better support the needs of
high-performance computing applications.

1. INTRODUCTION
There is a growing interest in the use of Java for high-
performance computing, stemming from Java's signi�cant
support for programming on distributed platforms. This
support includes compile-time and run-time security that
can be used as the basis for writing secure applications. Java
also provides inherent support for multithreading, allowing
the overlapping of computation with communication or I/O.
Java can save the state of an object and recreate that ob-
ject on another machine, supporting both persistent objects
and object migration. Java provides automatic garbage col-

lection, alleviating the programmer from memory manage-
ment. Perhaps the greatest bene�t of Java is its portability:
a Java application can be executed on any platform with
Java support.

Despite the many advantages of Java-based computation, it
is still unclear whether Java has the capability to support
the signi�cant I/O demands found in large scienti�c appli-
cations. In this paper, we investigate the I/O capabilities
of Java for high-performance computing. We perform ex-
periments on two di�erent parallel machines, a distributed-
memory system (IBM SP) and a shared-memory system
(SGI Origin2000), both of which employ modern parallel/high-
performance �le systems. We investigate I/O mechanisms
de�ned in Java that can be used to take advantage of such
parallel �le systems and study the performance implications
of each such approach. Finally, we provide suggestions for
relatively simple changes to the Java I/O model that can
signi�cantly improve performance.

1.1 Contributions of this Paper
The key contribution of this paper is that it provides a
detailed discussion and performance analysis of several ap-
proaches to parallel �le I/O available in Java and does so
across two di�erent parallel architectures and �le systems.
To date, there has been relatively little research focusing
on the I/O capabilities of Java in general, and on its capa-
bilities to perform parallel �le I/O in particular. To make
our results as general as possible, we do not consider any
approaches that cannot be performed by a user at the ap-
plication level.

1.2 Organization
The rest of this paper is organized as follows. In Section 2
we discuss I/O in high-performance computing applications.
In Section 3 we provide background information on the I/O
mechanisms de�ned in Java. We describe several approaches
for performing parallel �le I/O in Java in Section 4. Exper-
imental results are presented in Section 5. We o�er simple
suggestions for improving the Java I/O model in Section 6.
Related work is discussed in Section 7, followed by conclu-
sions in Section 8.



2. I/O IN HIGH-PERFORMANCE COMPUT-
ING

Many computationally intensive scienti�c applications also
need to access large amounts of data, and I/O is often the
bottleneck in such applications [3, 13, 22]. A common I/O
requirement is as follows. The application has some large
data structures, say multidimensional arrays, distributed
among processes in some fashion. The arrays must be read
from or written to a �le containing the global array. The
program may begin by reading in an input array and may
then write arrays to �les several times during the course of
the computation. The arrays in these applications are not
just byte arrays, but rather consist of integers, or 
oating-
point numbers, or some other data type. As we shall see
later on this paper, the fact that they are not just byte ar-
rays is important in the context of using Java for I/O in
these kinds of applications. In addition, the �les are usually
random-access �les, and processes seek to di�erent locations
in the �les to read/write data.

In this paper, we focus on the problem of concurrent reading
or writing of data from multiple processes/threads to a com-
mon �le in Java. We assume that a large one-dimensional
array of integers is block-distributed among processes and
must be read from or written to a common �le containing
the global array. While simple, this example is su�cient to
demonstrate the strengths and weaknesses of the Java I/O
model as applicable to the basic needs of high-performance
computing applications. Our experiments assume (and em-
ploy) a random-access �le that is striped across the disks of
a parallel �le system.

Much of the research related to parallel I/O has been per-
formed in the context of C, and C provides excellent support
for such operations. In particular, C allows the casting of
an array of any type into an array of bytes, and multidi-
mensional arrays can be treated as one-dimensional arrays
of the same size. The Unix I/O functions simply take a
pointer to a one-dimensional array, the number of bytes to
be read or written, the o�set in the �le, and carry out the
request as a single I/O operation. It is also quite simple to
perform parallel reads and writes in C without the need for
synchronization (on �le systems that support such access).
In particular, each process can seek to an independent (non-
overlapping) region of a shared random-access �le and then
perform its reads or writes to disjoint regions of the �le in
parallel.

There are other advantages of C/Unix based I/O as well.
One advantage is that local (nonportable) hooks to a parallel
�le system can provide excellent performance enhancements
on some machines. For example, the O DIRECT option avail-
able on the XFS �le system on the SGI Origin2000 allows
the application to bypass the system �le cache and write
directly to disk. On systems with high disk bandwidth, this
option can improve performance signi�cantly [7]. The disad-
vantage of this approach, of course, is that it is not portable.
Another advantage of C-based I/O is that there are portable
APIs, such as MPI-IO [10], that are implemented in an op-
timized fashion for di�erent machines and �le systems.

The situation with Java, however, is quite di�erent. Because
of various Java language constraints, performing parallel �le

I/O in Java is a much more complex issue. This is the focus
of the next section.

3. I/O IN JAVA
To understand the issues associated with performing parallel
I/O in Java, it is necessary to brie
y review the Java I/O
model [11].

Generally, I/O in Java is divided into two parts: byte-oriented
I/O, which includes bytes, integers, 
oats, doubles and so
forth, and text-oriented I/O, which includes characters and
text. In this paper, we are concerned only with byte-oriented
(binary) �le I/O. In Java, byte-oriented I/O is handled by
input streams and output streams, where a stream is an
ordered sequence of bytes of unknown length.

Java provides a rich set of classes and methods for operating
on byte input and output streams. These classes are hier-
archical, and at the base of this hierarchy are the abstract
classes InputStream and OuputStream. It is useful to brie
y
discuss this class hierarchy in order to clarify the possible
approaches to performing high-performance I/O in Java. To
facilitate this discussion, Figure 1 provides a graphical rep-
resentation of this I/O hierarchy. We note that we have not
included every class that deals with byte-oriented I/O but
have included only those classes that are pertinent to our
discussion.

3.1 InputStream and OutputStream Classes
The abstract classes InputStream and OutputStream are the
foundation for all input and output streams. They de�ne
methods for reading/writing raw byte input/output streams.

The InputStream class provides three methods for reading
bytes from an input stream. One method reads a single byte,
another method reads available data into a byte array, and
the third method reads the available data into a particular
region of a byte array. We are interested in the third method
since it allows distinct threads to read into distinct regions
of the same byte array in parallel. The signature for this
method is:

public int read(byte[] buf, int offset, int length)

throws IOException

In addition to the three read methods, the InputStreamclass
de�nes methods to skip over bytes in the input stream, to
determine the number of bytes available in an input stream,
and to close an input stream.

The OutputStream class provides methods for writing that
are analogous to those of InputStream. In particular, it
provides three write methods: one to write a single byte
to an output stream, one to write an array of bytes to an
output stream, and one to write a subarray of bytes to an
output stream. We are interested primarily in the third
method, which can be used as the basis for performing par-
allel writes (when used in the context of random-access �les,
as discussed below). The signature for this method is:



InputStream

FileInputStream

ByteArrayInputStream

FilterInputStream

BufferedInputStream

DataInputStream

RandomAccessFileOutputStream

FileOutputStream

ByteArrayOutputStream

FilterOutputStream

BufferedOutputStream

DataOutputStream

Figure 1: This �gure shows the I/O class hierarchy pertinent to this investigation. Note that the

RandomAccessFile class is completely outside of the InputStream and OutputStream hierarchy. As discussed

in Section 3.5, however, a connection can be made between a RandomAccessFile and a FileInputStream or
FileOutputStream.

public void write(byte[] buf, int offset,

int length) throws IOException

In addition to the three write methods, this class also sup-
ports methods to 
ush and close output streams. A very
signi�cant feature of the OutputStream class is that, unlike
the InputStream class, it does not support skipping (or seek-
ing) over bytes in the output stream. This precludes mul-
tiple threads from writing to distinct regions of the output
stream, which basically precludes performing parallel writes.
The solution to this problem is discussed in Section 4.

3.2 File Input and Output Streams
The FileInputStream and FileOutputStream classes are
concrete subclasses of InputStream and OutputStream, re-
spectively, and provide a mechanism to read from and write
to �les. FileInputStream provides all the methods of the
InputStream class and de�nes only one new method, which
can be used to obtain a �le descriptor object. The signature
for this method is:

public final FileDescriptor getFD()

throws IOException

Note that the ability to skip over bytes in a �le input stream
means that multiple threads can seek to disjoint regions in
an input �le. This feature, in addition to the fact that mul-
tiple threads can read into disjoint sections of a byte array in
parallel, provides the basis for parallel reads into a common
array.

There are three constructors for �le input streams. One con-
structor takes as a parameter a string representing the �le
name. Another constructor takes as a parameter a Java.io.File
object. The third constructor requires a �le descriptor ob-
ject. For reasons discussed below, the third constructor is
most pertinent to this discussion and has the following sig-
nature:

public FileInputStream(FileDescriptor fd)

Similar to the FileInputStreamclass, the FileOutputStream
class also provides the three write methods available in its
superclass and de�nes only one new method for obtaining
a �le descriptor object. The constructor for this class most
pertinent to our discussion takes as a parameter a �le de-
scriptor and has the following signature:

public FileOutputStream(FileDescriptor fd)

We note that it is not possible for multiple threads to seek
to di�erent locations in a �le output stream since the class
provides no method to do so.

3.3 Byte Array Streams
The ByteArrayInputStream class reads data from a byte
array using the methods of the superclass. It provides two
constructors: one that takes a byte array as its parameter
(and uses this byte array as the input source), and one that
takes a byte array plus an o�set and a length, and uses this
subarray as the input source. Otherwise, it de�nes no new
methods.

The ByteArrayOutputStream class writes bytes into succes-
sive components of an internal byte array. The size of this
internal byte array is determined by the class constructors.
One constructor takes no arguments and employs a default
bu�er size of 32 bytes. The second constructor takes as an
argument the initial size of the bu�er. In either case, the size
of the byte array grows to accommodate additional data. A
copy of the internal byte array can be obtained through the
toByteArray method. The signature for this method is:

public synchronized byte[] toByteArray()



Note that the toByteArray method is synchronized: ac-
cesses to this method are serialized by the implementation.

3.4 Filter Streams
Filter streams provide methods to chain streams together to
build composite streams. For example, a BufferedOutputStream
can be chained to a FileOutputStream to reduce the number
of calls to the �le system.

The FilterInputStream and FilterOutputStream classes
de�ne a number of subclasses that manipulate the data of an
underlying stream. The constructor for a FilterInputStream
object takes as a parameter an InputStream object, and the
constructor for a FilterOutputStream object takes as a pa-
rameter an OutputStream object. Otherwise, these classes
provide the same methods de�ned by the InputStream and
OutputStream classes.

Two subclasses of �lter streams are pertinent to this inves-
tigation. One subclass is DataInputStream, which allows
raw byte input to be treated at the level of Java primitive
types. The other subclass, BufferedInputStream, provides
bu�ering for an underlying stream. Similar subclasses are
de�ned by FilterOutputStream. It is worthwhile to brie
y
discuss these two subclasses.

3.4.1 Buffered Streams
The BufferedInputStreamand BufferedOutputStreamclasses
provide bu�ering for an underlying stream, where the stream
to be bu�ered is passed as an argument to the constructor.
The bu�ering is provided by an internal system bu�er whose
size can (optionally) be speci�ed by the user.

3.4.2 Data Streams
All the classes discussed thus far manipulate raw byte data
only. Applications, however, deal with higher-level data
types, such as integers, 
oats, doubles, and so forth. Java de-
�nes two interfaces, DataInput and DataOutput, that de�ne
methods to treat raw byte streams as these higher-level Java
data types. Together, these interfaces de�ne methods for
reading and writing all Java data types. The DataInputStream
and DataOutputStream classes provide default implementa-
tions for these interfaces. For example, the two methods
that read and write integers are the following:

public final int readInt() throws IOException

public final void writeInt(int i)

throws IOException

It is important to note that these methods read or write
a single integer at a time. No method exists in Java for
reading or writing an array of integers (or an array of any
data type other than bytes).

3.5 Random-Access Files
As mentioned above, it is not possible to seek to some lo-
cation in the �le when writing with the FileOutputStream

class because, unlike FileInputStream, FileOutputStream
provides no methods for seeking. To overcome this prob-
lem, we use the RandomAccessFile class that provides more
sophisticated �le I/O. In particular, it provides the seek
method that we require.

public void seek(long position) throws IOException

It is interesting to note that the RandomAccessFile class sits
alone in the I/O hierarchy and duplicates, rather than inher-
its, methods from the stream I/O hierarchy. In particular,
RandomAccessFile duplicates the read and write methods
de�ned by the InputStream and OutputStream classes and
implements the DataInput and DataOutput interfaces that
are implemented by the data stream classes. However, since
RandomAccessFile is not in the stream hierarchy, it cannot
be directly used where input or output streams are required.

There is, however, a (not entirely obvious) way to form a
connection between the RandomAccessFileclass and the rest
of the stream hierarchy. This can be done by getting the �le
descriptor of a random-access �le with getFD() and using
the �le descriptor as a parameter to the constructor for a
FileInputStream or FileOutputStream object. Once this
connection is made, a random-access �le can be chained to
�lter streams and byte-array streams.

4. APPROACHES TO PARALLEL FILE I/O
IN JAVA

In this section we describe six di�erent approaches for per-
forming parallel �le I/O in Java. Most of these approaches
are di�erent ways of working around the problem that Java
does not directly support the reading or writing of arrays of
any data type other than bytes.

4.1 Using Raw Byte Arrays
If the data to be read or written is already in the form of
a byte array, it is trivial to read or write the data using
the Java methods for reading/writing byte arrays. As noted
above, however, byte is the only data type for which such
array operations are de�ned.

Let us assume that multiple threads of a parallel program
need to write di�erent parts of a byte array to a common
�le. Assume further that the �le system permits concur-
rent writes to disjoint locations in a �le. We can perform
the I/O as follows. Each thread in the parallel program
creates a RandomAccessFile object, calculates its o�set in
the shared �le, and seeks to that position. It then uses the
write method de�ned by the RandomAccessFile to write
its portion of the byte array in a single operation, as shown
below.

// this is executed by the main thread

byte buf[] = new byte[buf_size];

// this code is executed by all of the threads.

// First create a RandomAccessFile object, then

// calculate offset in file

RandomAccessFile raf =

new RandomAccessFile (filename,access);

raf.seek(position);

// calculate offset within byte array and number

// of bytes to write, then perform write



raf.write(buf,my_start_buf,num_bytes);

It is important to note that this approach works correctly
both when existing �le is overwritten and when a new �le
is created, because of the semantics of the seek method.
In particular, a seek to a location past the end of the �le,
followed by a write, extends the length of the �le [18].

4.2 Converting to/from an Array of Bytes
As we shall see in Section 5, I/O involving byte arrays is
simple and also performs well. The problem, however, is
that real applications do not operate on arrays of bytes.
Rather, they deal with arrays of other data types, such as
integers, 
oats, and doubles. Java, unfortunately, provides
no methods for performing I/O operations on such arrays.
Furthermore, unlike C, Java does not allow users to sim-
ply cast an array of some other type into an array of bytes.
Nonetheless, we can still use the byte-array methods by ex-
plicitly converting an array of some other data type into an
array of bytes, and vice versa.

For example, we can write an array of integers by �rst right-
shifting one byte at a time into a byte array and then writing
the byte array. Similarly, we can read an array of integers by
�rst reading into a byte array and then converting the bytes
into integers. The only issue encountered in the conversion
from bytes to integers stems from the fact that Java does
not have unsigned data types. Thus, if the high bit of a
given byte is set, it is interpreted as a negative number when
converted to an integer. More precisely, the lower eight bits
of the integer are copied from the eight bits of the byte, and
the upper 24 bits are set to 1 (sign extension). We must,
therefore, take care of the sign bit when converting bytes
to integers. The conversion can be done as follows without
explicitly checking the sign bit (that is, without a branch):1

// Assume we are converting bytes 0 to 3 of a byte

// array (buf) into element 0 of an integer array.

int temp;

for (int i=0; i<4; i++) {

temp = (int) (buf[i]);

temp = temp & 255;

temp = temp << (i * 8);

int_array[0] = int_array[0] | temp;

}

4.3 Using Data Streams
It is possible to read/write a single integer at a time by us-
ing the methods de�ned in the DataInput and DataOutput

interfaces. As noted above, the RandomAccessFile class
implements these interfaces, making it relatively easy to
perform parallel I/O operations using data streams. The
pseudo-code for this approach is shown below. Note that
the writeIntmethod is called several times in a loop, writ-
ing one integer at a time, which is very expensive.

// main program

1We thank an anonymous referee for suggesting this solu-
tion.

int[] int_array = new int[num_ints];

// each thread calculates its position in the

// file and the array, and calculates the number of

// integers it needs to read or write.

RandomAccessFile raf =

new RandomAccessFile(filename,access);

raf.seek(position);

for (int i = start_buf;

i < (start_buf+num_ints_to_write); i++)

raf.writeInt(int_array[i]);

4.4 Using Buffered Data Streams
As we shall see in Section 5, using regular (unbu�ered)
data streams results in the poorest performance across all
approaches studied, because a call to the I/O subsystem
is made for every integer read or written. It is thus de-
sirable to seek approaches that internally bu�er data be-
fore reading/writing. The problem, however, is that the
RandomAccessFile class does not implement bu�ering, and
the FilterInputand FilterOutput streams (of which bu�ered
streams are a subclass) only work with objects of type InputStream
and OutputStream.

There is a way to use system bu�ering for a RandomAccessFile
object as follows. A RandomAccessFile can be chained to a
FileInputStream or FileOutputStream object through its
�le descriptor. The FileInputStream or FileOutputStream
object can be chained to a BufferedInputStream or
BufferedOutputStream object, which can then be chained
to a DataInputStream or DataOutputStream object.

We note, however, that it is not safe to use bu�ered data
streams for writing concurrently from multiple processes or
threads to a common random-access �le.2 This is because
each thread or process maintains its own local bu�er, and
the bu�ers of di�erent processes may not be coherent. This
problem does not exist in the case of concurrent reads, of
course.

The pseudo code for using bu�ered streams is shown be-
low, with the caveat that, depending on the implementation,
there is potential for erroneous results.

RandomAccessFile raf =

new RandomAccessFile(filename,access);

FileDescriptor fd = raf.getFD();

FileOutputStream fos = new FileOutputStream(fd);

BufferedOutputStream bos= new BufferedOutputStream(fos);

DataOutputStream dos = new DataOutputStream(bos);

// each thread calculates its offset within the array,

// its offset in the file, and the number of

// elements to write to disk.

raf.seek(position);

for (int i = start_buf;

i < (start_buf + num_ints_to_write; i++)

2We again thank an anonymous referee for bringing this
issue to our attention.



dos.writeInt(int_array[i]);

4.5 Using Buffering with Byte Array Streams
Another approach to bu�ering a data input or output stream
is to chain it to an underlying byte array stream. Then the
read and write methods invoked on the data stream will
be directed to the underlying byte array stream rather than
directly to disk. This composite stream is de�ned as follows:

RandomAccessFile raf =

new RandomAccessFile(filename,access);

ByteArrayOutputStream bos =

new ByteArrayOutputStream(size);

DataOutputStream dos =

new DataOutputStream(bos);

Note that it is advantageous to specify the correct bu�er size
to the ByteArrayOutputStream constructor, instead of just
using the default bu�er size of 32 bytes, in order to avoid
the cost of having the implementation grow (reallocate) the
bu�er as needed.

As in the previous cases, the individual threads seek to their
correct position in the integer array and the shared �le. In
the case of a write, the thread simply writes all its data
to the output data stream, which in turn writes it to the
underlying byte array stream. Once the write is complete,
the thread uses the toByteArray method to write the data
from the byte array to the shared �le. This is shown below.

for(int i = start_buf;

i < (start_buf + num_ints_to_write; i++)

dos.writeInt(int_array[i]);

raf.seek(position);

raf.write(bos.toByteArray());

It is slightly more complicated to use byte array streams for
read operations. First, each thread declares its own byte ar-
ray, creates the ByteArrayInputStreamand DataInputStream

objects, and seeks to the appropriate location in the �le.
Next, each thread reads from the �le into its byte array
using the low-level read method. Finally, the data is trans-
fered from the byte array into the integer array using the
read method of the data input stream class. The pseudo-
code for this operation is given below.

// each thread allocates its own buffer

byte[] buf =

new byte[num_bytes_to_read];

ByteArrayInputStream bis =

new ByteArrayInputStream(buf);

DataInputStream dis =

new DataInputStream(bis);

raf.seek(position);

raf.read(buf, 0, num_bytes_to_read);

for (int i = start_buf;

i < (start_buf + num_ints_to_read); i++)

int_array[i] = dis.readInt();

4.6 Other Approaches
There are two other approaches that we did not investigate.
One approach is to use the JNI interface and call Unix I/O
functions in C. We did not use this approach for two reasons.
First, it signi�cantly reduces the portability of the code.
Second, we were interested in evaluating the performance of
the I/O methods de�ned in Java itself.

The other approach we do not report on is the use of object
serialization to perform I/O. We did explore this approach
initially, but found that Java adds some additional bytes to
the �le in order to store object-related information. This
makes it di�cult to perform parallel reads or writes because
the threads would not know where to seek in the �le. Object
serialization in Java is also known to be very slow [2].

5. PERFORMANCE RESULTS
In this section we present the results of our experiments with
the various approaches described above. We �rst describe
the two machines used for our experiments.

5.1 Computational Platforms
We conducted experiments on both a shared-memory and
a distributed-memory parallel machine. The distributed-
memory machine was an IBM SP located at Argonne Na-
tional Laboratory. This machine has 80 compute nodes and
4 I/O processors. Each I/O processor controls four SSA
disks, each of 9 Gbyte capacity. The shared-memory ma-
chine used in these experiments was an SGI Origin2000,
also housed at Argonne National Laboratory. This machine
is con�gured with 128 compute processors and ten Fibre
Channel controllers connected to a total of 110 disks of 9
Gbyte capacity each. Both machines have parallel/high-
performance �le systems, namely, PIOFS on the SP and
XFS on the Origin2000.

On the shared-memory Origin2000, we wrote a multithreaded
Java program, each thread running on a separate proces-
sor. The threads all shared the array to be read or writ-
ten, but each thread operated on a distinct subarray region.
The shared array was divided equally among all the threads.
Similarly, all threads accessed distinct portions of the �le.
Each thread wrote 32 Mbytes at a time several times, re-
sulting in a total �le size of 1 Gbyte. We used version 3.1.1
of SGI's Java software, which was conformant with the be-
havior of Sun's JDK 1.1.6.

On the IBM SP, which is a distributed-memory machine,
we wrote a multiprocess parallel program. Each process ran
on a di�erent node of the SP (and a di�erent Java Virtual
Machine). We could have simply spawned a Java process
on each node, but our parallel program also needed some
additional information that MPI [9] typically provides, such
as the total number of processes in the computation and the
rank of a process in the process group (in order to determine
its position in the shared �le). One way to get around this
problem is to use one of the several research projects in this
area, such as JavaNOW [19] or an MPI wrapper for Java [15].
We used a simpler approach, however, in which we invoked
the Java program from within a simple MPI program written
in C. The MPI program used MPI functions to determine
the rank of the process and the number of processes, and
then invoked the Java program using the system() call in C,



passing the rank and number of processes as command-line
arguments. After the Java program completed, it returned
to the MPI program, which then accumulated performance
statistics. Each Java process had its own private array, but
all processes shared the global �le. We used a 4 Mbyte array
per process, based on previous experiments that have shown
this to be a good size for performing I/O on this SP. Each
process wrote multiple times resulting in a total �le size of 1
Gbyte, as on the Origin2000. We used IBM's Java software,
which was conformant with the behavior of Sun's JDK 1.1.2.

5.2 Results
The results of our experiments are shown in Figure 2. We
note that our intention was not to compare performance be-
tween the two machines since they have very di�erent I/O
con�gurations. Rather, we wanted to compare the perfor-
mance of the various approaches on a particular machine,
for two di�erent machines.

The experiments can basically be divided into two cate-
gories. The �rst category, which includes the �rst two ap-
proaches discussed in Section 4, uses the Java I/O methods
for reading/writing arrays of bytes. In the �rst case of this
category, we assume the data is already in byte form; in the
second case (called encode/decode in Figure 2), we explic-
itly perform the conversion from integer arrays to byte ar-
rays and vice versa. The second category, which includes all
the other experiments, uses the data stream classes either
alone or chained to some underlying stream that provides
bu�ering.

The I/O performance is quite poor when using the data
stream classes and methods, even when bu�ered. The poor
performance of the data stream classes stems from three
factors. First, when used without bu�ering, this approach
requires a call to the I/O subsystem for every element of
the array. This may be acceptable when I/O requirements
are small, but is certainly not acceptable for large scienti�c
applications. Secondly, even when bu�ering is provided by
an underlying stream, this approach still requires invoking a
method for every element of the array. With 64 threads and
a 1 Gbyte array, each thread must make over four million
calls to the readInt or writeInt methods. With a single
thread, this number increases to over 268,000,000. Clearly
this is a signi�cant obstacle to achieving high-performance
�le I/O. The third problem is that many of the methods of
the DataOutputStream class write to the underlying stream
one byte at a time, and each such write requires a lock ac-
quisition [12].

Although bu�ering improved the performance of data streams
by orders of magnitude (for example, from 0.00074 Mbytes/sec
to 0.19 Mbytes/sec), it could not match the performance
of writing byte arrays directly, which was more than 100
Mbytes/sec. We also observed that the size of the bu�er
was quite important when using the bu�ered data streams.
In particular, choosing the correct bu�er size more than
tripled the throughput. (We should also note that a nontriv-
ial amount of experimentation was required to �nd the best
bu�er size.) Again, the di�erence in performance, however,
was only in the range of 1 Mbyte/sec to 3 Mbytes/sec, for
example.

As expected, the best performance was obtained when using
the Java I/O facilities for directly reading and writing arrays
of bytes. In fact, the �rst approach, which simply assumed
the data was already in byte form, provided performance es-
sentially identical to that obtained when using C. However,
there was a signi�cant drop in performance (for all but one
experiment) when the application itself had to convert data
from an array of integers to an array of bytes or vice versa.

5.2.1 Results on the IBM SP
One striking result on the SP is the rather signi�cant drop in
performance observed when moving from 32 to 64 processors
using the �rst approach (raw byte arrays). The reason for
this drop is the contention caused by the undercon�gured
I/O subsystem with only four I/O processors. This trend
was not observed for any other approach, due to the fact
that the extra computation resulted in the separation in time
of some of the concurrent write requests. The best write
performance was obtained using the �rst approach with 32
processors (resulting in a bandwidth of 106 Mbytes/sec).
The best result obtained when using the second approach
(conversion from integers to bytes) was 20 Mbytes/sec with
64 processors. The maximum throughput observed across all
the other experiments was 7.5 Mbytes/sec, obtained with 64
processors and using byte array streams for bu�ering.

The best performance obtained for the read operations was
96 Mbytes/sec when using the �rst approach with 16 pro-
cessors. There was a small decrease in performance when
the number of processors was increased to 32 and 64, this
again due to the undercon�gured I/O subsystem. The best
performance obtained using the second approach was 30
Mbytes/sec with 64 processors. The best performance for
all the data stream methods was 7.5 Mbytes/sec, again ob-
tained with 64 processors and using byte array streams for
bu�ering.

5.2.2 Results on the SGI Origin2000
It is interesting to note that on the Origin2000, the second
approach, where the application performed the conversion
between integers and bytes itself, outperformed the �rst ap-
proach when writing with 64 processors. The reason for this
disparity again has to do with contention. As noted above,
the extra computation of the second approach has the e�ect
of separating in time some of the concurrent write requests.
This approach resulted in a throughput of 108 Mbytes/sec
with 64 processors. The best performance observed using
data streams was 4.1 Mbytes/sec, obtained using bu�ered
output streams with a 0.5 Mbyte bu�er.

The �rst approach resulted in excellent performance for the
read operations. For example, a throughput of 631 Mbytes/sec
was observed when using 16 processors. Again we see a de-
crease in performance when increasing the number of proces-
sors to 64 because of increased contention for I/O resources.
The second approach resulted in a maximum throughput of
158 Mbytes/sec with 64 processors. The maximum through-
put obtained using the data stream methods was 4 Mbytes/sec,
when either byte arrays or bu�ered streams were used to
bu�er the data streams.
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Figure 2: The performance of various approaches to high-performance �le I/O in Java



6. SUGGESTIONS FOR IMPROVING JAVA
I/O PERFORMANCE

The above results demonstrate that the I/O methods that
directly read/write arrays of bytes are the only methods
that provide reasonable I/O performance. Real applications,
however, do not operate on byte arrays; they need the ability
to read or write arrays of other data types, such as integers
and 
oats. The data stream methods that operate on such
data types do not allow users to read or write arrays of data
types. One can read or write only a single data item at a
time, resulting in poor I/O performance.

A relatively simple �x to these problems is for Java to pro-
vide data stream methods that read/write arrays of all the
primitive data types. Since Java already knows how to write
a single data type as a sequence of bytes and to read a single
data type from a sequence of bytes, it can easily be extended
to read or write an array of data types. This �x would not
only eliminate the need for many expensive I/O or method
calls, but it would also provide the Java implementation the
opportunity to optimize such methods for a particular ma-
chine and �le system.

This extension would require the introduction of six new
methods for writing and another six for reading. The sug-
gested write methods are shown below; the read methods
are analogous and are not shown.

writeShortArray (short [] data)

writeCharArray ( char [] data)

writeIntArray ( int [] data)

writeLongArray ( long [] data)

writeFloatArray (float [] data)

writeDoubleArray(double[] data)

While it is certainly possible to implement these methods
at the application level (as done in this study), implement-
ing them natively as part of the language should provide
much better performance. These methods do not solve the
problem for multidimensional arrays. However, multidimen-
sional arrays can be accessed by calling the methods for one-
dimensional arrays several times.

The proposed methods overcome the performance limita-
tions of the lowest-level I/O methods in Java. For high-
performance computing, application developers would also
need a higher-level parallel I/O library (such as MPI-IO [10])
for Java. Such libraries, if implemented in Java, would un-
doubtedly bene�t from the proposed methods.

Finally, we note that the proposed methods are not just
useful for I/O, but also for interprocess communication, and
would therefore bene�t networking applications as well.

7. RELATED WORK
Other than the large body of work related to parallel I/O [1,
4, 5, 8, 14, 16, 17, 20, 21], the work most closely related to
ours is the Jaguar project [23, 24], which aims to improve
Java I/O performance as one of its goals. Jaguar allows the
Java runtime system to be extended with new primitive op-
erations that enable e�cient access to hardware resources.

These primitives are speci�ed as short machine code seg-
ments that are directly inlined into the Java bytecode as it
is compiled. The Jaguar project is, in fact, complementary
to the work discussed in this paper, the di�erence being the
level at which performance improvement is targeted. This
paper deals with the Java I/O facilities available to the user
at the application level. The Jaguar project provides perfor-
mance enhancements at a lower system level. It seems clear
that modi�cations to Java at all levels will be necessary to
provide truly high-performance �le I/O.

Another interesting aspect of the Jaguar project is the idea
of pre-serialized objects, where objects are stored in a pre-
serialized format ready for communication or I/O. A similar
idea could be applied to arrays of Java primitive data types,
with the required encoding/decoding being performed by
threads executing in the background while the main thread
engages in other computation/communication.

8. CONCLUSIONS
In this paper, we have investigated the capabilities of Java
for high-performance �le I/O. This work demonstrates that
using the data stream methods in Java generally provides
poor results, even with careful bu�er size selection. Thus,
to obtain reasonable performance, the application is forced
to use the low-level I/O methods that read and write ar-
rays of bytes. To use these methods, the application must
itself convert the array of integers (for instance) to an ar-
ray of bytes. A better solution is for Java to provide data
stream methods that operate on arrays of integers and other
data types. This would signi�cantly simplify the implemen-
tation of parallel I/O operations in Java, and would provide
the Java implementation the opportunity to optimize such
methods for each di�erent platform.
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