
Appendix: Conjectures concerning Proof,

Design, and Veri�cation?

Larry Wos

Mathematics and Computer Science Division, Argonne National Laborator y,

Argonne, IL 60439-4801,

wos@mcs.anl.gov

1 Setting the Stage

This article focuses on an esoteric but practical use of automated reasoning that

may indeed be new to many, especially those concerned primarily with veri�ca-

tion of both hardware and software. Speci�cally, featured are a discussion and

some methodology for taking an existing design|of a circuit, a chip, a pro-

gram, or the like|and re�ning and improving it in various ways. (Although

the methodology is general and does not require the use of a speci�c program,

McCune's program OTTER does o�er what is needed. OTTER has played and

continues to play the key role in my research, and an interested person can gain

access to this program in various ways, not the least of which is through the

included CD-ROM in [3].) When success occurs, the result is a new design that

may require fewer components, avoid the use of certain costly components, o�er

more reliability and ease of veri�cation, and, perhaps most important, be more

e�cient in the contexts of speed and heat generation. Although I have mini-

mal experience in circuit design, circuit validation, program synthesis, program

veri�cation, and similar concerns, (at the encouragement of colleagues based on

successes to be cited) I present material that might indeed be of substantial

interest to manufacturers and programmers.

I write this article in part prompted by the recent activities of chip design-

ers that include Intel and AMD, activities heavily emphasizing the proving of

theorems. As for my research that appears to me to be relevant, I have made an

intense and most pro�table study of �nding proofs that are shorter [2, 3], some

that avoid the use of various types of term, some that are far less complex than

previously known, and the like. Those results suggest to me a strong possible

connection between more appealing proofs (in mathematics and in logic) and

enhanced and improved design of both hardware and software. Here I explore

diverse conjectures that elucidate some of the possibly fruitful connections.

The strongest argument opposed to what I discuss in this article rests on the

great amount of money, time, energy, and expertise that has been devoted to de-

sign and related activities. Indeed, one might understandably suspect that such

? This work was supported by the Mathematical, Information, and Computational Sci-

ences Division subprogram of the O�ce of Advanced Scienti�c Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

experts already know how to produce superb and often minimal design. (As a

counterargument, I note that the proofs found by OTTER, applying the method-

ology that has been developed as part of my research, often are startlingly unlike

those a person might �nd. Perhaps more important, many of the proofs that are

found are in various ways more appealing than the literature ofeers.) However,

a test of what is featured here is inexpensive, and, if the result is positive, the

reward might be immense. The test consists of some expert �rst supplying a

set of graduated-in-complexity designs and the proofs that they meet speci�ca-

tions. Perhaps the designs supplied would already have been maximized for good

properties. Second, if I am to be involved, part of the test requires supplying

the proofs in the clause notation, the notation used by OTTER. Perhaps Math-

ematica could produce the needed translations. Then I would take the proofs (in

clause notation) and attempt to shorten them or improve them in some other

aspect discussed here. If I found better proofs, which I have in Boolean algebra

(quite related to circuit design), I would submit them for evaluation.

If I were not involved, one might consult the book [3], which o�ers the pro-

gram and much of what is needed to use it. Such has indeed been the case for

areas of mathematics and of logic. Therefore, perhaps a new type of design would

emerge. Your cost is that of producing an OTTER input �le, and it appears that

might require but a few days of a person's time who knew about design; my cost

is research time devoted to an attempt to improve a given design. Sometimes

such research time and e�ort lead to a set of solutions, each of which could be

evaluated by an expert for its properties.

Also addressed in this article is the concern of design from scratch, that case

in which no design exists to be modi�ed, extended, and improved upon. I conjec-

ture that my research and that of colleagues that has culminated in answers to

diverse open questions will prove pertinent. After all, producing a design from

scratch answers the corresponding open question concerning its existence. In-

deed, quite di�erent from the task of �nding \nicer" and more desirable proofs

is the task of answering open questions.

I shall review without technical details various approaches I and colleagues

take for �nding \better" proofs and answering open questions, and I claim that

many of the approaches will prove useful to manufacturing, at least eventually.

The explicit and implicit claims and conjectures should be viewed most critically,

in view of my lack of expertise in design and synthesis. I will be content with

merely sketching diverse ideas. I will also include observations that might seem

too obvious to state, but are included to remove ambiguity.

To complete the stage setting, I give a foretaste of what is to come. Consider

the following circuit-design problem (known as the two-inverter puzzle) [3], one

that I myself would not have solved, but McCune's program OTTER did solve.

Using as many AND and OR gates as you like, but using only two NOT

gates, can you design a circuit according to the following speci�cation?

There are three inputs, i1, i2, and i3, and three outputs, o1, o2, and o3.

The outputs are related to the inputs in the following simple way:

o1 = not(i1) o2 = not(i2) o3 = not(i3).

Remember, you can use only two NOT gates!

The fact that an automated reasoning program was able to design the desired

circuit hints at what might be possible in the context of synthesizing circuits

from scratch; see Section 3.

In the context of �nding better circuits (see Section 2), imagine that a person

or a program succeeds in solving the two-inverter puzzle, but the solution ab-

surdly contains as a subexpression the OR of i1 and i1. In other words, assume

that the cited subexpression is not needed, that an unneeded OR gate is present.

The methodology presented in this article might quickly enable a program, given

the unwanted solution, to �nd a better one, omitting the extra OR gate.

Still with the focus on the two-inverter puzzle, in the context of term avoid-

ance (see Section 4), imagine that the �rst solution that is o�ered contains

NOT(NOT(i3)). Of course, a canonicalization rule could be applied to replace

the apparently unnecessary cited expression with i3. Far better and in the spirit

of the corresponding methodology to be touched upon, the program could be

instructed to avoid retention of all expressions containing NOT(NOT(t)) for any

term t. Possibly not obvious, such avoidance can contribute markedly to program

e�ectiveness; indeed, unwanted conclusions can lead to much wandering|for a

program, or for a person.

In contrast to the discussion focusing on combinational circuits, clearly a

focus on sequential design in which time and delay are factors presents distinctly

di�erent and di�cult problems to solve. Although I can at this moment o�er

little advice in that regard, in that my research has never dealt with this aspect,

I nevertheless conjecture that the preceding discussion will, for some, suggest

what is more than conceivable and perhaps promising.

2 Shorter Proofs in Relation to Improved Design

Although by no means does a one-to-one correspondence exist, it seems patently

clear that (in the following sense) a strong correlation does exist between proof

length and simplicity of design. Consider two proofs A and B, source unspeci�ed,

each intended to construct the same object (such as a circuit). Assume (in this

hypothetical case) that the length of A is moderately to sharply less than the

length ofB. Finally, assume that the (automated reasoning) program in use o�ers

an ANSWER literal (to display the constructed object) and that the program

�nds both proofs.

Quite often, although certainly not always, the object displayed when A is

completed is preferable to that displayed when B is completed in the sense that

it relies on fewer components. Therefore, it seems quite reasonable to conjecture

that a methodology for �nding shorter proofs might indeed be of interest in the

design of circuits or chips or the synthesis of programs. Moreover, a simpler (in

the sense under discussion) object in general is easier to verify, less di�cult to

show that the speci�cations are met. My research has produced such a method-

ology, one that has been applied successfully again and again in mathematics

and in logic (although quite often no shorter proof is yielded). (Section 6.7 of

[3] discusses the latest methodology I have formulated for systematically seeking

shorter proofs.)

In the context of �nding shorter proofs in my own research, one of the more

satisfying concerned �nding a 100-step proof, where I was presented for a start

with an 816-step proof. The theorem in focus was one from Boolean algebra, a

�eld relevant in various ways to circuit design. The approach I took did indeed,

at the beginning, rely on the supplied 816-step proof. Further, at each stage in

the process aimed at �nding a shorter and then still shorter proof, the program

keyed on the completed proof at an earlier stage.

The notion I suggest that might be of interest asserts that a program could

be given a design (circuit, chip, program) whose corresponding proof that the

speci�cations were met was in hand. The cited approach emphasizes the role of

the steps of the proof in hand, preferring formulas or equations that are similar

to one of the steps. Indeed, with a strategy known as the resonance strategy, the

proofs that are found along the way|shorter and shorter, if all is going well|

play a vital role. Another aspect of the approach concerns blocking the use of

various steps of a given proof with the intention that, not only will such blocked

steps be absent, but a shorter proof will emerge. (My preferred approach to

blocking the use of a step rests on the use of demodulation, a procedure normally

used for simpli�cation and canonicalization.)

Also of interest and quite curious is the fact that, occasionally, a shorter proof

has the property that all of its steps are among those of the somewhat longer

proof being used by the resonance strategy. The explanation rests with the fact

that the program �nds new ways of connecting already-used items, ignoring oth-

ers totally, and succeeding in completing a proof. For example, sometimes the

program can use the �fth step with the twelfth step to deduce the twentieth step,

which in the longer proof was obtained from the eighteenth and nineteenth, and

discover that the eighteenth and nineteenth steps can be ignored. The corre-

spondence for design would be the use of some, but not all, of the components

of an existing design with (so to speak) a rewiring, without the introduction of

new components.

3 New Proofs in Relation to Radically New Designs

In contrast to the preceding section in which the object is to take an existing

design and improve upon it, here the focus is on �nding the desired object

from scratch. In such a case, often, no clue exists concerning the nature of the

corresponding proof whose ANSWER literal, if successful, will display the object.

Starting from scratch, no surprise, is far more di�cult than beginning with an

existing object and its corresponding proof. Nevertheless, I and my colleague

Branden Fitelson are very encouraged by our various successes with �nding a

proof where no clue concerning its nature was available [1].

As for the word \radically" occurring in the title of this section, it was not

used lightly. The proofs yielded by applying the various methodologies relying

on OTTER's arsenal of weapons are (so it strongly appears) sharply unlike what

a person might produce. For example, in �elds of logic, the literature steadfastly

o�ers numerous proofs relying heavily on the use of terms of the form n(n(t)) for

various terms t, where the function n denotes negation (not). In contrast to the

literature and the implicit view that such double-negation terms are virtually

required, I have found (through heavy use of OTTER) numerous proofs avoiding

such terms. More important, the methodology is general|not tuned to any

speci�c type of term, such as that involving negation.

For a second example, where a researcher might understandably shy away

from considering a messy and complex formula, equation, or expression, a rea-

soning program �nds little discomfort in its consideration. Indeed, equations

with more than 700 symbols present no problem for OTTER. Simply put and

without explanation, the attack taken by a powerful automated reasoning pro-

gram often resembles that taken by an unaided researcher in few if any ways.

Rather than a disadvantage, (it seems to me) this divergence in attack accounts

for many marked successes. I conjecture (with some trepidation) that, if the goal

were a radically new design, an expert might be greatly rewarded by adding as

an assistant a program such as OTTER

One key aspect of the methodology OTTER applies when seeking a proof

where none is in hand is reliance on the already-cited resonance strategy, but

reliance in a slightly di�erent manner. Speci�cally, what amounts to patterns

corresponding to steps that proved useful in related proofs are included in the

input. Often very few of those correspondents (resonators) are present in the

proof that results when successful, and often not many more of its steps match

one of the resonators. Naturally, the question then arises concerning how such

inclusions help. With a new proof, I suspect that those few of its steps that

are either one of the actual patterns or match a resonator (in a manner where

variables are treated as indistinguishable) provide the keys to getting around

narrow corners, over wide plateaus, and the like (speaking metaphorically). In

other words, without the guidance o�ered by the included resonators, success

would not occur. The idea is similar to the case in which a colleague provides a

few vital hints, even if that colleague cannot solve the actual problem.

4 Term-Avoidance Proofs in Relation to Design

The avoidance of terms, such as those in the double-negation class, is somewhat

reminiscent of avoiding the use of some component. Sometimes the desire is for

minimal but nonzero use of some type of component|as was the case in the

two-inverter puzzle|but, often, the intent is to never have present some type

of term or component. For example, OR gates might come into play in some

fashion during the exploration by person or by program, and yet their actual

use might be unwanted. As commented earlier, a program such as OTTER can be

instructed to completely avoid retaining any unwanted conclusion, thus re
ecting

the intent of the user.

5 Complexity of Proofs

In this section, in contrast to the preceding in which I was able to give hints about

a concrete relation between properties of proofs and improvements in design, I

simply discuss another aspect of my research concerned with proof betterment.

In other words, I (at the moment) leave to the expert in design, veri�cation, and

synthesis the extrapolation to other areas.

One of the sometimes annoying properties of all proofs in hand is unwanted

complexity of various types. The most obvious type concerns the length of the

formulas or equations of the deduced proof steps. Simply put, the proofs in hand

may each be far messier than preferred. Such messiness is not merely an aesthetic

consideration; indeed, its presence can make the proof harder to follow and may

suggest that key lemmas (that would reduce the complexity) have as yet not

been discovered.

OTTER o�ers what is needed in the context of deduced-step length, namely,

a parameter called max weight. The user can assign a value to this parameter and

can instruct the program to measure deduced-step complexity purely in terms

of symbol count. When a new conclusion is drawn whose complexity exceeds the

user-assigned value to max weight, the conclusion is immediately discarded.

Further, by assigning a small value to max weight and by including as res-

onators expressions corresponding to the steps of an existing proof with even

smaller assigned values, the user can attempt to force the program to �nd a sub-

proof with an intriguing property (discussed earlier). Speci�cally, to complete a

proof, the program (in the case under discussion) sometimes �nds a proof that

is shorter than the one in focus such that all of the deduced steps of the shorter

proof are among those of the proof whose steps are being used to guide the pro-

gram's attack. In e�ect, if successful, the original proof has been (so to speak)

rewired in a manner that reduces the number of components needed to achieve

the objective.

Of a quite di�erent nature in the context of proof complexity is that con-

cerned with the maximum number of distinct variables found in the deduced

steps. In particular, for each formula or equation from among the deduced steps,

a number (integer) corresponding to it can be trivially computed that matches

the corresponding number of distinct variables present. The formula P(i(x,x)),

for example, has the number 1 associated with it, one distinct variable even

though two variables (not distinct) are present. The maximum of the assigned

numbers to the deduced steps (excluding those that correspond to the input

or hypotheses) is the number of maximum distinct variables for the proof. Is

that number (as a measure of complexity) in some important manner related to

component use or instruction use?

Fortunately, OTTER o�ers the appropriate parameter, max distinct vars.

The user can assign a value to this parameter. When a conclusion is deduced,

before it is retained, the number of distinct variables in it is compared with

the max distinct vars and, if it is strictly greater, the new item is immediately

purged.

The use of this parameter can have some unexpected consequences for proof

betterment and, perhaps, for design enhancement. Indeed, if i is the minimum

of the various values of the maximumnumber of distinct variables for the known

proofs, and if j is assigned to max distinct vars with j strictly less than i, then

the program is forced to pursue a line of study that cannot produce, if successful,

any of the known proofs. In other words, reminiscent of Section 3, the program

might complete a radically new proof, �nd a radically new design.

Just as a note, other measures of complexity can be nicely and e�ectively

studied with OTTER. For but one example, a measure of complexity concerns

the level of a proof. By de�nition, the level of the input items that characterize

the problem is 0, and the level of a deduced item is 1 greater than the maximum

of the levels of the hypotheses from which it is deduced. This parameter is

pertinent to tree depth, the tree of the proof.

6 Veri�cation

In this article, I have begun to make a case for the use of automated reason-

ing in the context of design and veri�cation. Mainly, I have focused on design

(implicitly, of circuits, chips, and programs). However, all things being equal,

the simpler the design, the greater the ease of veri�cation. Therefore, what has

been discussed has some relevance to veri�cation. Explicit is the position that

the properties of a proof that constructs some object are re
ected in the na-

ture of the object. For example, if the proof is strictly shorter than that in hand,

then (quite often) the corresponding object rests on the use of fewer components

(whatever they may be). For a second example, if the proof avoids the use of

some type of term (such as double negation), then the constructed object avoids

the use of some type of component.

As for additional topics that appear to merit mention, perhaps the following

are among them. OTTER can be and has been used to show that one of a set of

axioms is dependent on the remainder. For design, the parallel might be that of

showing that some thought-to-be key property that must be studied, in addition

to the rest, in fact is dependent on the rest. If the remaining properties are shown

to hold, then the cited key property must, without verifying its presence. Fitelson

and I have also succeeded in proving that a weakening of some well-recognized

axiom system does the trick, su�ces to axiomatize the area of discourse. The

analogue might be that of showing that some key property can be replaced by

a far weaker property, one that is easier to satisfy and easier to verify.

7 Review and Summary

The approach taken in this article is to merely sketch various notions, to provide

hints or clues as to what I conjecture to be more than feasible. Although I claim

no expertise in design, synthesis, and veri�cation, my research has yielded some

startling results in mathematics and in logic. Some of those results concern the

answering of open questions, whose analogue might be the design of a radically

new nature. Some of the results focus on proof betterment: shorter, less com-

plex, term-avoidance, and the like. The analogues of those have been discussed,

although not in the greatest depth.

The beauty of relying on a program such as McCune's OTTER is that its

proofs are most detailed. Another charming and useful aspect of its proofs is

that they very often di�er sharply from the type of proof an unaided researcher

�nds. This program o�ers a veritable arsenal of weapons from which to choose

when attacking a question or problem, as well as diverse mechanisms pertinent

to powerful reasoning. The program runs with incredible speed and, in contrast

to living creatures, tirelessly.

As discussed here, through the use of the resonance strategy, the presence of

an actual design can be put to great use when the goal is to re�ne and improve

it in some manner. However, if the various successes in answering open questions

points in the right direction, the lack of a design does not prevent the �nding

of a desired object; indeed, one can start from scratch, as I and my colleague

Branden Fitelson have done in areas of logic. Of course, starting from scratch

presents a more di�cult problem to solve, especially when no clues are o�ered

of any type regarding the nature of a possible proof.

The material sketched here might be timely, in view of the current interest

in theorem proving by members of industry that include Intel and AMD. I sus-

pect that (perhaps) many of the items discussed here o�er a new notion, even

to those familiar with automated reasoning. I cannot measure at this time the

practicality. Certainly, one obstacle is sequential design in contrast to combina-

tional, that concerned with time and with delay, for example. Nevertheless, I

await (with pleasure and anticipation) your examination of and comment on the

ideas presented here. I conjecture that a program such as OTTER will provide a

most valuable automated reasoning assistant for design and synthesis|it clearly

has for us in mathematics and in logic.

References

1. Fitelson, B., and Wos, L.: Missing Proofs Found, preprint ANL/MCS-P816-0500,

Argonne National Laboratory, Argonne, Illinois (2000)

2. Wos, L.: The Automation of Reasoning: An Experimenter's Notebook with OTTER
Tutorial. Academic Press, New York (1996)

3. Wos, L., and Pieper, G. W.: A Fascinating Country in the World of Computing:

Your Guide to Automated Reasoning. World Scienti�c Publishing, Singapore (1999)

