
Visualization Development Environments 2000 Proceedings

1

Using Desktop Graphics Workstations for Interactive Remote Exploration
of Large Data Sets1

Lori A. Freitag2 Raymond M. Loy3

Mathematics and Computer Science Division
Argonne National Laboratory

1 Portions of this paper have been previously published by the authors as ``Adaptive, Multiresolution Visualization of Large Data Sets

using a Distributed Memory Octree'' which appeared in the Proceedings of SC99 held in Portland, Oregon in 1999. The authors were
supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

2 9700 S. Cass Ave, Argonne, IL, 60439. freitag@mcs.anl.gov.
3 9700 S. Cass Ave, Argonne, IL, 60439. rloy@mcs.anl.gov.

Abstract

The interactive visualization and exploration of large
scientific data sets is a challenging and difficult task; their
size often far exceeds the performance and memory
capacity of even the most powerful graphics workstations.
To address this problem, we have created a technique that
combines multiresolution data reduction methods with
parallel computing to allow interactive exploration of
large data sets while retaining full-resolution capability.
We describe the creation of reduced data sets using several
different criteria including user-specified error bounds or a
preset performance criterion. We discuss the software
architecture of the system with particular emphasis on the
algorithms used to efficiently create a reduced data set and
the software used to communicate between the remote data
reduction server and the local graphics client. We present
performance results for the visualization of Rayleigh-
Taylor instability and hairpin vortex data sets.

1. Introduction

Interactively exploring tera- and petabyte data sets is an
extremely challenging task, particularly for scientists whose
primary access to visualization resources is a desktop
graphics workstation. To address this problem, researchers
are exploring a number of approaches that provide remote,
interactive navigation of very large data sets including the
following.

• Image-based rendering techniques use two or more
reference images from multiple viewpoints to
reconstruct either the geometry in a scene or new
images of the scene as the user's viewpoint changes
(see, for example, [1,2,3,4,5]). The primary
advantage of this technique for remote data
exploration is that the amount of data transmitted
and manipulated locally is independent of the
complexity of the scene or original data set. Thus
the costs are fixed as data set sizes increase.

• Remote parallel visualization servers utilize remote
computational resources to visualize full-resolution
data sets either as the computation proceeds (e.g.,
[6,7]) or as a post-processing step (e.g.,
[8,9,10,11]). The geometries of the derived
visualization entities, rather than images, are
extracted and communicated to the graphics
workstation for display. No approximation errors
are introduced in this process, but the size of the
reduced geometries grows as a function of the
overall problem size.

• Subsampling and clustering techniques create
smaller, full-dimensional data sets by sampling the
original data at specified locations or by averaging
clusters of points from the original data set. The
simplest approach to subsampling is to create a
uniform grid representation of the original data set,
and this is common in practice. Alternatively, a
hierarchical, multiresolution representation of the
data can be constructed using, for example,
quadtrees or octrees [12,13,14], progressive meshes
[15], wavelets [16], or other clustering approaches
[17,18]. The cost of these methods does not
significantly increase as the number of visualization
tasks increases, but the amount of data that can be
used is limited by the speed and memory of the local
graphics workstation. Thus, as the overall problem
size increases, the percentage of subsampled points
that can be used decreases leading to increased
approximation errors.

Our approach uses a parallel octree infrastructure to
create a multiresolution subsampled data set that is
communicated to the local graphics workstation for
visualization. We use an adaptive approach which allows
the user to interactively request higher resolution in regions
of interest without sacrificing local graphics performance.
Thus, the approximation errors associated with data
reduction can be mitigated at the cost of increased

VDE 2000, Princeton, New Jersey, April 27-28, 2000

2

communication. In Section 2, we describe the parallel
algorithms and data structures used to create the reduced
data sets. We also discuss the insertion criteria that we
have found to be the most useful. Our system combines the
parallel octree software with a custom-developed vtk
visualization tool, and we describe the architecture in
Section 3. In Section 4, we show the use of this system to
visualize data from simulations of Rayleigh-Taylor
instabilities and hairpin vortices developing around a
hemisphere. We show results that compare uniform and
multiresolution subsampling techniques to demonstrate
accuracy and efficiency tradeoffs between the two methods.
Finally, in Section 5 we offer concluding remarks and
indicate directions of future work.

2. Multiresolution Subsampling Using a
Parallel Octree

Our approach to interactive remote data exploration is to
use a parallel octree infrastructure to create a general-
purpose tool for adaptive, multiresolution subsampling of
the original data set. Currently, our system allows file-
based scalar field input and inserts each data point into the
appropriate leaf octant. That leaf is then evaluated
according to a specified criterion and refined if necessary
with its associated data points reassigned to the new leaf
octants. Our subsampling code is general purpose and
requires only spatial coordinate information from the
original data set, with no connectivity information
necessary. We have successfully used our approach with
unstructured tetrahedral and hexahedral, block adaptive,
and uniform meshes.

2.1 Insertion Criteria

To create the reduced data set, field data values are
inserted into the appropriate leaf octants using their spatial
location. The field data values are averaged or otherwise
agglomerated after insertion into the octree. To provide an
indication of the error associated with the reduced data set,
we compute and store statistical values such as the standard
deviation, σ, and maximum deviation from the mean, e, for
each leaf octant. These values are normalized by the mean
to yield σn and en, respectively, which are included as
additional scalar fields to be visualized so that the user has
an indication of the fidelity of the reduced data set to the
original data set. These measures of error also serve to
highlight potential regions of interest; the cells with a large
deviation from the average value are likely to have fine-
scale structure that was not adequately captured by the
reduction process.

We provide default routines to support reductions that
meet user-specified bounds in standard or maximum
deviation. Additionally, we provide stubs to allow custom,
user-defined insertion criteria to ensure wide applicability
of our software. However, it is hard to predict the size of
the reduce data set that results from a given error threshold.
To assist with meeting a given performance constraint

(such as the maximum number of leaf octants), the system
can automatically determine the error threshold. Error
values from octant nodes that are candidates for refinement
or coarsening are analyzed using a recursive histogram. A
single leaf octant that is refined results in at most 8
nonempty leaves (a net increase of 7); leaf siblings that are
coarsened to a single leaf have a net decrease of 7. Using
these estimates and the error distribution from the
histogram, an error threshold can be chosen which results in
the desired number of leaf octants. The entire process may
be repeated until the result is within a specified tolerance of
the goal.

2.2 Parallel Octree Infrastructure

To effectively manage a large distributed data set, the
octree must also be distributed across the processors of the
parallel computer, and we now describe the data structures
and techniques used for parallel creation, coarsening, and
traversal of the tree. Efficient traversal of the parallel
octree data structure is enabled by inter-octant links, which
may be either local or off-processor. Each processor
maintains a local root list of octants whose parents are off-
processor. Spatial information associated with each of
these local root octants allows the coordinate information
of its descendants to be easily inferred without
communication. An octree partitioning algorithm using a
space-filling curve [19], together with arbitrary octant
migration, is used for load balancing the field data and the
associated octree. If the data reduction were closely
coupled to the parallel application, octant migration could
be performed to track the location of the application data.

When creating an initial parallel octree from file input,
each processor reads portions of the file in parallel and
distributes the data to the processor that owns the
corresponding piece of the domain. To maintain good
parallel performance, the octree is periodically rebalanced
during this process. After rebalancing, the spatial
information and processor association of all local roots are
exchanged which allows processor ownership of any point
to be determined easily. If a point is contained in more
than one local root, the subtree associated with the smallest
of these local roots contains the leaf octant into which this
point should be inserted.

Once the parallel octree has been constructed, refinement
and coarsening to comply with new error criteria are
performed in parallel for each processor's local roots and
no communication is necessary. Leaves are recursively
subdivided when they exceed the target error criteria, Emax.
A set of leaf siblings are pruned when their values are less
than the prescribed minimum error criteria, Emin, and the
total value among the siblings is less than Emax. We note
that it is not always possible to meet both a maximum and
minimum error criteria; in our implementation Emax takes
precedence. The current algorithm declines to coarsen
when off-processor links are encountered. Complete
coarsening could be accomplished by migrating terminal

Visualization Development Environments 2000 Proceedings

3

octants which are local roots to their parent's processor and
repeating the tree adjustment. When no local roots are
terminal, the process is complete.

After the parallel octree has been adapted to meet the
insertion criteria, copies of the octants with their average
data (but without the much larger original data) are
migrated to processor 0. Processor 0 then publishes a
unique vertex list, the octree connectivity, and the reduced
data set which can be accessed by the visualization
program. Alternatively, these quantities may be stored to a
file for later processing.

3. Software Architecture

Our interactive data exploration system is comprised of
four major components:

1. field data input to the data reduction code either
through file input or potentially through interactive
requests to a running application,

2. the parallel octree code to create the reduced data
set,

3. the local visualization environment, which can
consist of externally developed desktop tools such
as vtk [20], the General Mesh Viewer (GMV) [21],
and IRIS Explorer [22], or custom tools built for
state-of-the-art display devices such as the CAVE
virtual reality theater [23], and

4. a portable communication infrastructure that allows
the user to make interactive requests for new
reduced data sets from the visualization environment
and will allow the octree code to obtain new field
data from a running application.

These four components and their interactions are shown in
Figure 1. The arrows between the components indicate the
communication necessary for an interactive environment.
The width of the arrows indicates the relative size of the
messages; small messages are needed to request new
reduced data sets or field data values; large messages are
required to transfer information from the application to the
octree code and from the octree code to the visualization
environment. Solid boxes and solid arrows indicate
components and interactions that currently exist; dashed
box outlines and arrows indicate components and
interaction models that are planned for future instantiations
of the toolkit. The visualization toolkits listed in Roman
font are currently supported; near-term support is planned
for those in italics. Asterisks indicate extensible toolkits
that will support interactivity; the others must be used with

Figure 1: The four primary components of the
data reduction toolkit and their interactions.

file input and output. We note that because our reduced
data set is derived from an adaptive octree data structure,
only visualization tools that can support multiresolution or
unstructured data sets are considered.

We currently support two desktop visualization
environments: GMV and a custom desktop toolkit based on
vtk classes. GMV is a freely available software package
from Los Alamos that is distributed in binary form. It is
lightweight and easy to use but not extensible to support
interactive requests to the parallel octree code. To support
dynamic, adaptive level-of-detail requests, we developed a
visualization tool using JAVA Swing components [24] to
provide a GUI to the vtk classes that provide the basic
functionalities of contouring, cutting planes, and vector
glyphs. The user interface supports adaptive level-of-detail
requests to the parallel octree code so that the user may
interactively change the leaf criterion and thereby the
resolution of the reduced data. The new criterion may be
applied either globally or in a specified region of interest.
In this way, the user can ``zoom in'' with high-resolution
views in local subregions without sacrificing graphics
performance. All results presented in this paper were
obtained using the vtk environment.

Communication between the octree code and the desktop
graphics application is performed using the ALICE
Memory Snooper (AMS) [25] from Argonne National
Laboratory. This communication infrastructure meets all of
our design requirements; that is,

• it is both portable and flexible so that the parallel
octree code and the visualization environment can
run simultaneously on different, possibly remote,
computer architectures,

• it allows dynamic linking and decoupling of
multiple processes so that (1) the user can

VDE 2000, Princeton, New Jersey, April 27-28, 2000

4

periodically monitor a long-running application and
(2) multiple scientists can collaborate while
visualizing their data, and

• it helps manage synchronization of distributed data
sets to ensure that the reduced data set is self-
consistent.

The AMS library was designed to provide a lightweight
API and infrastructure that enables computational steering
and remote monitoring of application programs. The
design is based on a client/server model using TCP/IP and
Unix sockets that allows users to connect to a running
application and access or modify the application's
published variables at user-defined synchronization points.
Thus it can be used both for fulfilling interactive requests
for new data sets from a long-running simulation and for
modifying or ``steering'' the simulation. In the current
instantiation, the octree code publishes the reduced data set
and variables relating to the criteria for refinement and
coarsening of the tree. The vtk client accesses that
information and is able to change the refinement and
coarsening criteria, define a bounding box to specify a
region of interest, and access the resulting reduced data set.

4. Results

In this section we compare our multiresolution
subsampling technique with a subsampling approach that
uses a uniform grid. Subsampling using uniform grids has
several performance advantages including faster creation of
the reduced data set, a smaller amount of data
communicated to the graphics workstation, and more
efficient visualization algorithms. In fact, for a given
reduced data set size, it can be shown that remote data
exploration tools using uniform grids will outperform their
multiresolution counterparts by a factors of four or more
depending on the visualization algorithms and graphics
hardware used [26]. Thus, the multiresolution technique
will outperform the uniform grid method only if the
subsampling approximation errors are reduced by the same
amount or more using significantly fewer grid points.

To explore these tradeoffs, we subsample two different
application data sets. The first data set is from a Rayleigh-
Taylor (R-T) simulation in two dimensions and contains
N=5.3×104 data points. This data set is characterized by a
contact discontinuity between two fluids of different
density and represents a broad class of applications whose
primary features are sharp discontinuities which are
typically local, lower-dimensional phenomena. In the left
image in Figure 2, we show uniform grid subsampling using
15616 data points; on the right, we show the leaf octants
from a multiresolution subsampling using 4102 data points.
The average errors are .0347 and .0339, respectively
showing that you can achieve the same error using far fewer
multiresolution grid points which offsets the performance
differences.

 Figure 2: The left image shows the results of
uniform subsampling using 15616 grid points
for the two-dimensional Rayleigh-Taylor data
set; the right image shows the results of
multiresolution subsampling using 4102 grid
points.

The second data set is from a three-dimensional
simulation of hairpin vortices developing in flow around a
hemisphere and contains N=2.05×106 data points. This
problem is representative of a class of applications in which
the scalar field of interest describes fully three-dimensional
features. In Figure 3, we show isosurfaces for a vorticity
indicator of -0.28. The left image shows uniform grid
subsampling using 34798 grid points which results in an
average error of 3.18. The right image shows
multiresolution subsampling with 34725 grid points which
results in an average error of 1.46. Thus a much smaller
error, and much more detail, can be obtained using the
same number of multiresolution grid points than can be
obtained with a uniform grid.

5. Directions of Future Work

Many computations are performed on nonuniform,
adaptive grids which implies that a uniform grid
subsampling will have more error in regions containing a
large number of grid points which are typically the areas
containing features of interest. Multiresolution approaches
address this difficulty; subsampled points may be
concentrated in the same regions as in the original

Visualization Development Environments 2000 Proceedings

5

Figure 3: The upper image shows the results of
uniform subsampling using 34798 grid points
for the hairpin vortex data set; the lower image
shows the results of multiresolution subsampling
for 34725 grid points.

computation. In addition, our results indicate that they can
be more cost effective than uniform grid subsampling when
the performance metric is the cost to achieve a given level
of error.

Ongoing work for this toolkit includes adding new
functionalities to improve the flexibility of the octree code,
performance tuning and testing, and eventually adding
computational steering capabilities to monitor and change
ongoing large-scale simulations. To improve the flexibility,
we will provide more options for averaging or interpolating
the data as it is inserted into the octree and for determining
when to subdivide leaf octants including, for example,
gradient tests on scalar fields. In addition, several
performance improvements can be obtained in the parallel
octree code. In particular, processing the initial data set
from a file can be improved by leveraging ongoing work in
collective communication within the ROMIO
implementation of MPI-IO. We also plan to test the
performance on wide area networks to tune the
infrastructure for remote access to the reduced data set.

Acknowledgments

We acknowledge the FLASH project for providing the
motivating applications described in this paper. In
particular, we thank Mike Singer of Cornell and Henry
Tufo of the University of Chicago for their assistance in

preparing the Rayleigh-Taylor and hairpin vortex data sets.
We also thank Matt Ahrens and Ibrahima Ba for their help
in incorporating the ALICE Memory Snooper into the data
reduction software system.

References

[1] Manuel Oliveira and Gary Bishop. Image-Based
Objects. In Proceedings of 1999 ACM Symposium of
3D Graphics, pages 191-198, Atlanta, Georgia, April
1999.

[2] Nelson Max. Hierarchical rendering of trees from
precomputed multi-layer Z-buffers. In Rendering
Techniques '96: Proceedings of 7th Eurographics
Workshop on Rendering, pages 165-174, New York,
1996. Springer.

[3] Steven Gortler, Li Wei He, and Michael Cohen.
Rendering layered depth images. Technical Report 97-
09, Microsoft Research, March 1997.

[4] William Mark. Efficient reconstruction techniques for
post-rendering 3D image warping. Technical Report
TR98-011, University of North Carolina, March 1998.

[5] Chun-Fa Chang, Gary Bishop, and Anselmo Lastra.
LDI tree: A hierarchical representation for image-based
rendering. In Proceedings of SIGGRAPH 99, pages
291-298, Los Angeles, California, August 1999.

[6] Robert Haimes. pV3: A distributed system for large-
scale unsteady CFD visualization. AIAA paper, 94-
0321, January 1994.

[7] Arsi Vaziri and Mark Kremenetsky. Visualization and
tracking of parallel CFD simulations. In Proceedings of
HPC 95. Society of Computer Simulation, 1995.

[8] T.W. Crockett and T. Orloff. A MIMD rendering
algorithm for distributed memory architectures. In
Proceedings of the Parallel Rendering Symposium,
pages 35-42, 1993.

[9] Thomas Crockett. Beyond the renderer: Software
architecture for parallel graphics and visualization.
Technical Report ICASE Report No. 96-75, Institute for
Computer Applications in Science and Engineering,
1996.

[10] Kwan-Lui Ma. Parallel rendering of 3D AMR data on
SGI/Cray T3E. In Proceedings of the Frontiers 99
Conference, pages 138-145, 1999.

[11] C. Hanson and P. Hinker. Massively parallel
isosurface extraction. In Proceedings of Visualization
92. IEEE Computer Society, 1992.

VDE 2000, Princeton, New Jersey, April 27-28, 2000

6

[12] Peter Lindstrom, David Koller, William Ribarsky,
Larry Hodges, Nick Faust, and Gregory Turner. Real-
time, continuous level of detail rendering of height
fields. In Computer Graphics Proceedings SIGGRAPH
96, Annual Conference Series, pages 109-118. ACM,
1996.

[13] Brian Von Herzen and Alan Barr. Accurate
triangulations of deformed, intersecting surfaces. In
Computer Graphics Proceedings, SIGGRAPH 87,
volume 21, pages 103-110. ACM, 1987.

[14] Eric LaMar, Bernd Hamann, and Kenneth Joy.
Multiresolution techniques for interactive texture-based
volume rendering. In Proceedings of IEEE Visualization
99, pages 355-362, October 1999.

[15] Hugues Hoppe. Progressive meshes. In Computer
Graphics SIGGRAPH 96 Proceedings, pages 99-108,
1996.

[16] Jos Roerdink and Michel Westenberg. Wavelet-based
volume visualization. Technical Report IWI 98-9-06,
Institute for Mathematics and Computing Science,
University of Groningen, 1998.

[17] Bjoern Heckel, Gunther Weber, Bernd Hamann, and
Kenneth Joy. Construction of vector field hierarchies.
In Proceedings of IEEE Visualization 99, pages 19-26,
October 1999.

[18] Alexandru Telea and Jarke van Wijk. Simplified
representation of vector fields. In Proceedings of IEEE
Visualization 99, pages 35-42, October 1999.

[19] Joseph E. Flaherty, Raymond M. Loy, Mark S.
Shephard, Boleslaw K. Szymanski, James D. Teresco,
and Louis H. Ziantz. Adaptive local refinement with
octree load-balancing for the parallel solution of three-
dimensional conservation laws. In J. Parallel and Dist.
Comput., 47:139-152, 1997.

[20] Will Schroeder, Ken Martin, and Bill Lorensen. The
Visualization Toolkit, An Object-Oriented Approach to
3D Graphics. Prentice Hall PTR, Upper Saddle River,
New Jersey, 1998.

[21] Frank Ortega. General mesh viewer, user's manual,
1999.

[22] IRIS explorer, release 3.5, user's guide, Unix version,
1993.

[23] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surround-screen projection-based virtual reality: The
design and implementation of the CAVE. In ACM

SIGGRAPH 93 Proceedings, pages 135-142. ACM,
1993.

[24] Robert Eckstein, Marc Loy, and Dave Wood. JAVA
Swing. O'Reilly and Associates, Sebastopol, California,
1998.

[25] Ibrahima Ba, Christopher Malon, and Barry Smith.
Design of the ALICE Memory Snooper,
http://www.mcs.anl.gov/ams, 1999.

[26] Lori Freitag and Raymond Loy. Comparison of
remote visualizaton strategies for interactive exploration
of large data sets. Technical Report ANL/MCS-P803-
0300, Argonne National Laboratory, April 2000.

	1.	Introduction
	2.	Multiresolution Subsampling Using a Parallel Octree
	2.1	Insertion Criteria
	2.2	Parallel Octree Infrastructure

	3.	Software Architecture
	4.	Results
	5.	Directions of Future Work
	Acknowledgments

