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Abstract

Many scienti�c applications have large I/O requirements, in terms of both the size of data and the
number of �les or data sets. Management, storage, e�cient access, and analysis of this data present an

extremely challenging task. Traditionally, two di�erent solutions are used for this problem: �le I/O or

databases. File I/O can provide high performance but is tedious to use with large numbers of �les and

large and complex data sets. Databases can be convenient, 
exible, and powerful but do not perform

and scale well for parallel supercomputing applications. We have developed a software system, called

Scienti�c Data Manager (SDM), that combines the good features of both �le I/O and databases. SDM

provides a thin layer of database-like functionality on top of a high-performance, parallel �le-I/O interface

(MPI-IO). As a result, users can access data with the convenience of databases and the performance of

MPI-IO, without having to bother with the details of either. In this paper, we describe the design and

implementation of SDM. With the help of two parallel application templates, ASTRO3D and an Euler

solver, we illustrate how some of the design criteria a�ect performance.

�This work was supported by the Mathematical, Information, and Computational Sciences Division subprogramof the O�ce

of Advanced Scienti�c Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.



1 Introduction

Many large-scale scienti�c experiments and simulations generate very large amounts of data [7, 19] (on the

order of several hundred gigabytes to terabytes), spanning thousands of \�les" or data sets. Management,

storage, e�cient access, and analysis of this data present an extremely challenging task. Currently avail-

able techniques for this purpose are either raw �le-I/O interfaces, such as MPI-IO [10, 15], or full-
edged

databases. File-I/O interfaces provide high performance but are too cumbersome to use with large, complex

data sets and large numbers of �les. For example, the user must remember �le names and the organization

of data in a �le and must specify the exact location in the �le from which data must be accessed. Databases,

on the other hand, provide a convenient, high-level interface and powerful data-retrieval capability, but

they do not measure up to the performance requirements of large-scale scienti�c applications running on

supercomputers.

We have developed a solution that combines the good features of both �le I/O and databases. Speci�cally,

we have developed a software system, called Scienti�c Data Manager (SDM), that provides a thin layer of

database-like functionality on top of a high-performance, parallel �le-I/O interface (MPI-IO). SDM provides

a high-level, user-friendly interface. Internally, SDM interacts with a database to store application-related

metadata, and it uses MPI-IO to store the real data on a high-performance parallel �le system. It takes

advantage of various I/O optimizations available in MPI-IO, such as collective I/O and noncontiguous re-

quests, in a manner that is transparent to the user. As a result, users can access data with the convenience

of databases and the performance of parallel �le I/O, without having to bother with the details of either.

Figure 1 illustrates the basic idea.

In this paper, we describe the design and implementation of SDM. SDM is currently implemented to use

either MySQL [16] or PostgreSQL [20] as the database for metadata and MPI-IO for �le I/O. In designing

such a system, we have a wide choice of how to organize the data in �les. We have implemented three

di�erent ways of organizing data in �les. At one extreme, level 1, we store all data sets in separate �les as

they are generated. At the other extreme, level 3, we store data sets in a very small number of �les and,

using a database table, keep track of where in the �les each data set is stored. We also have an intermediate

approach, called level 2. We examine the performance implications of using each of these approaches by

studying the performance results obtained for two application templates, ASTRO3D and an Euler solver,

on an IBM SP and SGI Origin2000.

The rest of this paper is organized as follows. In Section 2 we discuss our goals in developing SDM. In

Section 3 we describe how SDM is implemented. Performance results are presented in Section 4. We discuss

related work in Section 5 and conclude in Section 6.

2 Design Objectives

We had three major goals in developing SDM: provide high-performance parallel I/O, provide a high-level

application programming interface (API) that eliminates the need for the user to bother with the details of

low-level �le I/O or databases, and store enough metadata in a database so that the user can easily retrieve

previously stored data.

� High-Performance I/O. To achieve high-performance I/O, we decided to use a parallel �le-I/O

system to store real data and use MPI-IO to access this data. MPI-IO, the I/O interface de�ned as

part of the MPI-2 standard [10, 15], is rapidly emerging as the standard, portable API for I/O in

parallel applications. High-performance implementations of MPI-IO, both vendor and public-domain

implementations, are available for most platforms [8, 13, 21, 22, 30]. MPI-IO is speci�cally designed

to enable the optimizations that are critical for high-performance parallel I/O. Examples of these

optimizations include collective I/O, the ability to access noncontiguous data sets with a single function,

and the ability to pass hints to the implementation about access patterns, �le-striping parameters, and

so forth.

� High-Level API. Our goal was to provide an API that did not require the user to know either

MPI-IO or databases. The user can specify the data with a high-level description, together with
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Figure 1: SDM architecture

annotations, and use a similar API for data retrieval. SDM internally translates the user's request

into appropriate MPI-IO calls, including creating MPI derived datatypes for noncontiguous data [29].

SDM also interacts with the database when necessary, by using embedded SQL functions.

� ConvenientData-Retrieval Capability. SDM allows the user to specify names and other attributes

to be associated with a data set. SDM internally selects a �le name into which the data will be stored;

the mapping between data sets and �le names is stored in the database. The user can retrieve a data

set by specifying a unique set of attributes or by specifying the date of the desired run (if no date is

speci�ed, data from the last run is retrieved).

3 Implementation

We brie
y describe how we implemented SDM; details will be provided in the full paper. We describe the

metadata storage in the database, the SDM API, and the organization of data in �les.

To explain the implementation, we use the example of an astrophysics application, ASTRO3D, developed

at the University of Chicago. For simplicity of explanation, we consider the two-dimensional version of

this three-dimensional application. (The performance results presented in this paper are for the full three-

dimensional version.). In this application data is stored in arrays that are block-distributed in each dimension

among processes. The application generates three 
oating-point data sets for data analysis, which are written

to �les at every six time steps; four character-type data sets for data visualization, which are written at every

four time steps; and three 
oating-point data sets for restart, which are written every six time steps. (The

frequencies of all these writes can be varied.) Let a0; a1; a2 be the data sets for data analysis, b0; b1; b2; b3 be

the data sets for visualization, and c0; c1; c2 be the data sets for restart.

3.1 Database Tables to Store Metadata

SDM uses three database tables for storing metadata: run table, access pattern table, and execution table

(see Figure 2). These tables are made for each application. Each time an application writes data sets,

SDM enters the problem size, dimension, current date, and a unique identi�cation number (runid) to the

run table. The access pattern table includes the properties of each data set, such as data type, storage order,
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data access pattern, and global size. SDM uses this information to make appropriate MPI-IO calls to access

the real data. The execution table stores a globally determined �le o�set denoting the starting o�set in the

�le of each data set.

3.2 Application Programming Interface

To use SDM, the user must �rst call the function SDM initialize. This function initializes the SDM

environment and establishes a connection to the database. Next, to specify the three groups of data sets (data

analysis, visualization, and restart) in our example application, ASTRO3D, described above, the user must

call the function SDM make datalist. This function assigns properties to the �rst data set in a group. The

same properties can be assigned to other data sets in the same group by calling SDM associate attributes.

The main reason for making groups of data sets is that SDM can then use di�erent ways of organizing

data in �les, with di�erent performance implications. For example, each data set can be written in a separate

�le, or the data sets of a group can be written to a single �le.

In the case of write operations, the user must call SDM set attributes to set the attributes associated

with a group and to return a set of handles to be used for further I/O operations. If an application writes

header information along with the data, SDM make header must be used to return an array of handles for

writing the header information.

In the case of read operations, a date input can be given if the user wants to retrieve data sets from a

speci�c run. If not, the data sets produced by the last run are read. Also, the properties of the data sets

need not be speci�ed, since a chosen process (process 0) retrieves this information from the database and

broadcasts it to others. This is done in the SDM select attributes function. If the application has header

information to be retrieved, SDM select attributesH must be called.

The main SDM functions for writing and reading data are SDM write and SDM read. Before calling these

functions, the user must provide some information necessary for SDM to perform I/O, for example, the

starting points and sizes of the subarray in each dimension in case of block distribution, or the size of process

grids and distribution arguments in each dimension in the case of cyclic distribution. To perform I/O, the

handle of a group, position of a data set within the handle (group), current time step, and pointer to the
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A = SDM_make_datalist(3, { });

SDM_finalize(3, handleA);

write call

handleA = SDM_set_attributes(3, A);

for (i=0; i<lastTimestep; i++) {

}

headerA = SDM_make_header(3, A, FLOAT, 6); 

A[0].basic_pattern = REGULAR;

A[0].data_type = FLOAT;

A[0].storage_order = ROW_MAJOR;

A[0].access_pattern[0] = BLOCK;

A[0].access_pattern[1] = BLOCK;

SDM_associate_attributes(3, &A[0]);

SDM_finalizeH(3, headerA);

initialize(&date);

date.year = 1999;

date.month = 10;

date.day = 10;

handleA = SDM_select_attributes(3, A);

for (i=0; i<lastTimestep; i++) {

}

a 0

a 1

a 2

a 0, i, buf);

a , i, buf);1

a , i, buf);2

SDM_read(handleA, 

SDM_read(handleA, 

SDM_read(handleA, 

SDM_readH(headerA, 

SDM_readH(headerA, 

SDM_readH(headerA, 

, i, headerBuf);

, i, headerBuf);

, i, headerBuf);

a , a , a 2

read call

0 1

, i, headerBuf);0aSDM_writeH(headerA, 

, i, headerBuf);1aSDM_writeH(headerA, 

, i, headerBuf);2aSDM_writeH(headerA, 

SDM_write(handleA, a 0, i, buf);

SDM_write(handleA, a , i, buf);1

SDM_write(handleA, a , i, buf);2

headerA = SDM_select_attributesH(3, A);

SDM_subarray(handleA, 3, 0, StartingPoints, SubArraySizes, NULL);

SDM_subarray(handleA, 3, 0, StartingPoints, SubArraySizes, NULL);

SDM_initialize(App);

Figure 3: Example of using the SDM API to perform I/O in the astrophysics application

application bu�er are passed to the SDM I/O function. Note that the user does not have to provide �le

names. SDM generates the �le name and records the name in the database.

Finally, the user must call SDM finalize and SDM finalizeH, to close all �les, close the connection to

the database server, and free all memory allocated by SDM.

Figure 3 shows how the SDM API is used to perform I/O in a two-dimensional version of the astrophysics

application.

3.3 File Organization

SDM supports three di�erent ways of organizing data in �les. In level-1 �le organization, each data set

generated at each time step is written to a separate �le, as shown in Figure 4. This �le organization is

simple, but it incurs the cost of a �le open and close at each time step, which on some �le systems can be

quite high, as we shall see in the performance results. For a large number of data sets and time steps, this

method can be expensive because of the large number of �le opens.

In level 2, each data set (within a group) is written to a separate �le, but di�erent iterations of the same

data set are appended to the same �le. This is illustrated in Figure 5. This method results in a smaller

number of �les and smaller �le-open costs. The o�set in the �le where data is appended is stored in the

execution table.

In level 3, all iterations of all data sets belonging to a group are stored in a single �le, as shown in

Figure 6. As in level 2, the �le o�set for each data set is stored in the execution table by process 0 in the

SDM write function. The idea is that if a �le system has high open and close costs, SDM can generate a

very small number of �les. If an application produces a large number of data sets with a large problem size,

level-3 �le organization would result in very large �les, which may a�ect performance.

We study the performance implications of the three �le-organization levels in the next section.
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Figure 4: Level-1 �le organization. The superscript on a data set denotes the time step, and the shadowed

area in each box shows the SDM-generated name of the �le in which the corresponding data set is written.
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4 Performance Results

We obtained all performance results on the IBM SP and SGI Origin2000 at Argonne National Laboratory.

The IBM SP has 80 compute nodes and 4 I/O nodes. Each I/O nodes controls four SSA disks, each of

9 Gbyte capacity. The parallel �le system on the machine is IBM's PIOFS [2]. The SGI Origin2000 has

128 processors and 10 Fibre Channel controllers connected to a total of 110 disks of 9 Gbyte capacity each.

The �le system on the Origin2000 is SGI's XFS [11, 26]. XFS supports an optimization called direct I/O,

which we used in our experiments. When certain alignment restrictions are met, the user can choose the

direct-I/O option, in which the �le system moves data directly between the user's bu�er and the storage

device, bypassing the �le-system cache. Direct I/O eliminates an extra memory copy into the cache and

can perform well for large I/O and high-bandwidth storage systems. Direct I/O can be used from an MPI-

IO program|the ROMIO implementation of MPI-IO that we used supports direct I/O [31]. We present

performance results with both direct I/O and regular (bu�ered) I/O.

We used two application templates, ASTRO3D and a three-dimensional Euler solver, in our performance

experiments. As mentioned in Section 3, ASTRO3D is an astrophysics application, developed at the Univer-

sity of Chicago, that writes several three-dimensional distributed arrays for visualization, restart, and data

analysis [28]. We used a problem size of 256� 256� 256, which resulted in a total of around 880 Mbytes of

data per iteration for all arrays.

The second application is a three-dimensional Euler solver for the problem of three-dimensional transonic


ow about an M6 wing [9]. This application is a mesh-structured code that writes the physical values and

residual of each node at certain iterations. The structure of these values is a distributed global vector, and

each value has �ve components (density, energy, and three coordinates of momentum). In addition, the

application writes the physical coordinates and pressure at each mesh point. In our experiments, we ran the

code for 50 iterations and wrote data at every 5 iterations. The problem size was 194� 34� 34.
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4.1 Costs of Database Access

SDM uses TCP/IP to connect to the database servers. We performed our experiments with two di�erent

databases, MySQL [16] and PostgreSQL [20]. Figure 7 shows the database-access cost of the write operation

in the ASTRO3D and Euler solver on the SGI. As described in Section 3, the connection and disconnection to

the database server occur once in SDM initialize and SDM finalize, respectively. In SDM set attributes,

process 0 accesses the run table and access pattern table to store attributes, and in the write operation, it

stores the �le o�set into the execution table. In ASTRO3D, the access to the execution table occurred

19 times, and in the Euler solver, the access to the execution table occurred 60 times. As can be seen in

Figure 7, the database-access cost using both the database servers is less than 0.6 sec. This cost, however,

will change according to the number of I/O operations occurring in the applications.

We observed that MySQL performs better than PostgreSQL. Therefore, we used only MySQL in the rest

of the performance experiments.

4.2 Results for ASTRO3D

Figure 8 shows the write and read bandwidths for ASTRO3D on the IBM SP using 32 processors for the

three levels of �le organization. We used only one iteration of the program; therefore, levels 1 and 2 resulted

in the same �le organization. Level 3 results in much higher bandwidth because only three di�erent �les are

created, and, therefore, only three �le opens occur. The high cost of �le opens on the PIOFS �le system [28]

results in lower performance for levels 1 and 2, where 19 separate �les are created. The impact of �le-open

time can indeed be quite large.
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Figure 7: Cost of accessing the database for the two
applications
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Figure 8: I/O bandwidth for ASTRO3D on the IBM
SP

Figures 9 and 10 show the write and read bandwidths for ASTRO3D on the SGI using 16 processors.

We measured performance for both direct I/O and bu�ered I/O. For writing data, direct I/O performed

better than bu�ered I/O. There are two reasons for this. First, with bu�ered I/O, XFS serializes concurrent

writes to the same �le, whereas with direct I/O, concurrent writes are allowed to proceed in parallel. Second,

direct I/O eliminates a copy into the �le-system cache. For reading data, bu�ered I/O performed better.

Again, there are two reasons for this. One reason is that XFS does not serialize bu�ered reads, so direct

reads do not have any extra advantage in the area of parallelism. The second reason is that XFS performs

a read-ahead (prefetch) in the case of bu�ered reads, and not in case of direct reads. The read-ahead policy

works well for this application, and bu�ered reads therefore perform better.

Since the cost of �le opens is small on XFS, the three levels of �le organization perform nearly the same.
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4.3 Results for the Euler Solver

Figures 11 and 12 show the write and read bandwidths for the Euler solver on the IBM SP using 32 processors.

The total data size written was around 240 Mbytes. In level 3, only two �les were generated, one for writing

the coordinates and pressure at each mesh node and the other for writing the physical values and residual at

each node. In level 2, six vectors (that is, the three coordinates, pressure, physical values of each node, and

nodal residual) were written separately, resulting in a total of six �les. In level 1, the six vectors generated

every �ve iterations were written separately, resulting in a total of 60 �les. As Figures 11 and 12 show,

level 3 performs the best because of the high open cost on PIOFS. In level 1, the �le open cost takes around

80% of the total execution time; in level 2, it takes around 30%; and in level 3, it takes around 20% of the

total execution time.

level 1 level 2 level 3
0.0

10.0

20.0

30.0

40.0

W
rit

e 
B

an
dw

id
th

 (
M

B
/s

ec
.)

Figure 11: Write bandwidth for the Euler solver on the

IBM SP
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Figures 13 and 14 show the write and read bandwidths for the Euler solver using 16 processors on the

SGI. For this application, we used only bu�ered I/O. We could not use direct I/O because the memory

allocation for distributed vectors was done inside the numerical library (PETSc [18]) that the application

uses, and thus we could not align the bu�ers to the cache line as required for direct I/O. For the write

operation, levels 2 and 3 performed slightly better than level 1. For the read operation, however, level 1

performed the best. The reason is that the read-ahead policy of XFS for bu�ered reads operates on a per-�le
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basis, and therefore works to the application's advantage when it has more number of �les.
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Figure 13: Write bandwidth for the Euler solver on the

SGI Origin2000
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Figure 14: Read bandwidth for the Euler solver on

the SGI Origin2000

5 Related Work

SRB (Storage Resource Broker) [1] provides a uniform interface to access various storage systems, such as �le

systems, Unitree, HPSS, and database objects. However, it does not fully support the optimizations imple-

mented in MPI-IO. Shoshani et al. [24, 25] describe an architecture for optimizing access to large volumes of

scienti�c data stored on tapes. Chervenak et al. [4] describe a general architecture for managing distributed

scienti�c data sets in a grid environment. An architecture for data-intensive distributed computing using

DPSS is described in [32, 33]. An initial discussion of a framework for scienti�c data management similar to

the one described in this paper is given in [5].

There have been several e�orts to optimize I/O in parallel �le systems and runtime libraries [3, 6, 12, 14,

17, 23, 27]. However, �le systems and libraries have a lower-level interface than SDM, requiring more work

from the user.

6 Conclusions

We have presented the design and implementation of an environment for high-performance scienti�c data

management, called Scienti�c Data Manager (SDM), which is built on top of MPI-IO and also interacts with

a database for storing metadata. SDM provides a simple, high-level interface and performs all necessary I/O

optimizations transparent to the user. We also experimented with di�erent ways of organizing data in �les,

called level 1{level 3. In general, when �le-open cost on a particular �le system is high, level 3 performs

well because it minimizes the number of �les created. If the �le-open cost is small, the performance of the

three levels depends on how the number and size of �les a�ects performance on the particular �le system.

An appropriate �le organization policy can thereby be chosen for a particular �le system.

On the XFS �le system, we found that the �le open cost was so small that it did not signi�cantly a�ect

the I/O performance. Instead, our experiment focused on the use of direct I/O and bu�ered I/O in the

ASTRO3D template. For writing data, we found that direct I/O generated much better performance than

bu�ered I/O by avoiding the overhead of copying the data into bu�er cache. For reading data, however,

bu�ered I/O performed better because of its read-ahead policy.

We are developing SDM further to support other types of applications, particularly unstructured-grid

applications. We also plan to use it for e�ciently retrieving subsets of data for visualization applications.
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