
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

ANL/MCS-TM-235

Implementation of a Distributed Multiterabyte Storage System

by

Mark Hereld, Bill Nickless, and Rick Stevens

Mathematics and Computer Science Division

Technical Memorandum No. 235

October 1998

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

ii

Abstraact 1

1. Introduction 1

2. UCATS Science User Applications 2

2.1 CASA 2

2.2 CARS 3

2.3 Astrophysical Magnetohydrodynamics 3

3. Implementation and Research Issues 3

3.1 Heterogeneous User Environment Support 3

3.2 Access Transparency 4

3.3 Benefits of Distribution 5

3.4 Reliability and Integrity 5

4. System Description 6

4.1 Hardware 6

4.2 System Software 6

4.3 Logical Configuration 6

4.4 Client Access Methods 8

4.5 Detailed Configuration and Environment 9

5. Simulation Project 9

5.1 Design and Implementation 10

5.2 Workload 10

6. Future Directions and Conclusions 12

References 12

Implementation of a Distributed Multiterabyte Storage System

by

Mark Hereld, Bill Nickless, and Rick Stevens

Abstract: The University of Chicago and Argonne National Laboratory are
building a highly distributed storage system to meet the needs of a cross-
disciplinary group of scientists and to investigate the issues involved in
implementing such a system. The storage system is based on IBM 3590/3494
tape technology managed by ADSM software. High-speed wide-area networking
is required to support the distributed user community. NFS, DFS, FTP, and other
user access methods are supported. A simulation project undertaken to guide
system development has provided useful insights even in the calibration and
design phases.

1. Introduction
The University of Chicago/Argonne Terabyte Storage (UCATS) project has two primary goals:

• Deploy a distributed HSM system to support a number of diverse applications, providing a unified
data repository [1] spanning resources at the University of Chicago and Argonne National Laboratory.

• Provide a testbed for experimenting with distributed mass storage systems and distributed
filesystem software— all integrated into workstation, data collection, visualization, and
supercomputing environments.

Subsidiary goals and criteria for success of the project include the following:

• Support a heterogeneous user environment that includes storage requirements ranging from
backing up laptops through checkpoints of massively parallel processor supercomputers.

• Provide user access transparency such that the distributed nature of the system is not visible to the
user. Ideally, access semantics and performance should be indistinguishable from or at least as good
as a single-site system.

• Make the distributed nature of the system a benefit to the user. When possible the system should
be optimized to perform better because of its distributed nature. Possible benefits include fault
tolerance, convenience, and higher performance.

• Minimize impact on the network. Even though we have a high-performance network, we wish to
design the system to minimize excess data motion through the wide-area network (WAN).

2

• Maintain data reliability and integrity. User confidence in the repository has to come first, and the
distributed nature of the system should not reduce reliability or integrity.

• Optimize performance for both read- and write-intensive uses of the system. We expect to use a
custom-written simulator, as well as empirical observation and experimentation, to determine optimal
disk caching policies, buffer sizes, number and organization of filesystems and tape units.

To meet these goals, we are deploying a distributed storage system based on IBM’s ADSTAR Distributed
Storage Manager (ADSM) [2]. Based on our experiences with the I-WAY project [3,4,5], we decided to
use ATM [6] network technology for the interconnections between components distributed across the
Chicago metropolitan area. Argonne National Laboratory and the University of Chicago participate in the
Metropolitan Research and Education Network (MREN) [7], which is an ATM network run at OC-3 (155
megabit/second) speeds by Ameritech. We use the Distributed File System (DFS) [8] to provide a unified
file name space, security model, and local cache performance for end users.

2. UCATS Science User Applications

Datasets in many scientific disciplines are pressing into terabyte territory. Such large datasets will allow
researchers to solve new kinds of problems but only if we develop the technologies necessary for
efficiently managing, organizing, and examining these data troves. The diversity of databases,
examination modes, and throughput needs makes the problem of optimizing a data storage and
delivery system very difficult.

The UCATS project was founded on the needs of a handful of science projects whose research areas
include theoretical and experimental astrophysics, climate studies, structural biology, and cosmic ray
physics. We expect that the UCATS project will grow to serve an increasing number of diverse and
demanding research areas.

Our collaborators' datasets have achieved behemoth proportion in different ways. Some experiments
generate one huge dataset by performing continuous measurements of a system. Other endeavors serve a
large community of experimenters with individually modest datasets.

2.1 CASA
Using the largest and most sensitive high-energy telescope yet built, University of Chicago physicists are
studying air shower events that are produced by high-energy cosmic rays. The 500 meter by 500 meter
Chicago Air Shower Array (CASA) is indirectly sensitive to primary cosmic rays with energies above 100
TeV.

The experiment has already produced nearly a terabyte of data, with 7 TB expected in the near term.
These data will be used to study the spectrum of cosmic rays and the distribution of gamma rays from the
plane of the galaxy.

In the past, such experiments have created a large cache of data on magnetic tapes, which are passed once
through reduction filters that yield a selected subset of the data. The resulting compressed dataset is
more manageable than the full raw dataset, but limits the questions that can be answered. Access to the
entire nonfiltered dataset allows for studies requiring the greatest overall sensitivity to, for example, rare
events at the highest energies detectable by CASA.

The data are collected as time-tagged events characteristically requiring 1.4 kB per event at a continuous
rate of 20 events/sec. Over 2 GB/day and nearly 1 TB/year are produced. These will be accessed from
several SGI workstations located at the University of Chicago. A single researcher, for example, might

3

pass through the entire dataset in a more or less sequential fashion with custombuilt software that accesses
the stored data through an interface based on the ADSM API. Several researchers might be accessing the
data simultaneously in this way and at different points in the dataset.

2.2 CARS
The Consortium for Advanced Radiation Sources (CARS) is a collection of more than 140 scientists from
40 institutions nationwide who will be using the Advanced Photon Source (APS) at Argonne to study a
large and diverse set of experiments in structural biology, geophysics, chemistry, and materials science.
The APS will supply this diverse scientific community with a brilliant source of X-rays for images and
time-resolved studies of biological molecules, geophysically relevant minerals, and new materials.

The data from all of these areas are most typically in the form of two-dimensional images about 2 MB in
size. These are grouped in batches that represent either time sequences or repeated images of the system
under study. For example, the data from a single researcher’s experiment might require between 2 and
100 GB and take a couple of days to collect.

In this application, the administrators of the APS experimental stations write the data to the storage
system. The individual researchers will have read-only access to directory partitions in their name. With
many otherwise unrelated users, security becomes an important issue. Users in this group may typically
transfer their experimental data only a few times, in pieces, to their local workstations and analyze it
locally. This is practical over ATM for even the largest datasets. Their data will remain in the archive for
about 6 months as a primary backup source. Most of the storage required for this application will reside
in the Argonne library, while a subset may reside in the University of Chicago library.

2.3 Astrophysical Magnetohydrodynamics
Astrophysicists at the University of Chicago are studying turbulence in a variety of settings. Among these
are stellar and planetary interiors, explosive events such as novae and supernovae, and accretion disks.
The numerical experiments require direct solution of nonlinear differential equations on the fastest
computers available.

The results of these numerical experiments are stored as a time-ordered sequence of large three-
dimensional data cubes containing lists of the interesting physical quantities (such as energy and
momentum flux). Typical problems might generate from 10 to 20 separate runs, each representing a time
sequence requiring around 50 GB.

The simulations are run at Argonne on the IBM SP parallel machines. Research into efficient parallel I/O
techniques is integral to this work. Once created, the data will be available for analysis, in various
visualization modes, including the CAVE at Argonne and an ImmersaDesk and SGI workstations at the
University of Chicago.

3. Implementation and Research Issues

3.1 Heterogeneous User Environment Support
Because the UCATS project is both a real applications environment and a research testbed, we need to
support a diversity of end-user clients. We also are providing filesystems-based access, ftp access, and
direct access to the ADSM server via client API interfaces. We have developed a simplified user access
library, called COIL, that enables users to access the most commonly needed features of the client API.
Heterogeneity demands filesystem access to different client systems via their supported interface. The API
interface access is limited to storage managed by ADSM for that type of access (i.e., a client using the API

4

cannot directly access data stored on the HSM, which is allocated for backing up filesystem clients). This
limitation improves reliability by preventing users from corrupting data backing filesystems, but it reduces
flexibility. One can imagine applications that would want to have both filesystem and direct access to
data on tape. Several applications plan to use the ADSM to back database applications.

COIL is motivated by three factors revolving around distributed storage: the nonuniform nature of file
availability and access speed, the desire of application developers to exert some control over filesystem
behavior, and the fact that some useful storage systems are simply not available to users at the traditional
UNIX system call level. Some filesystems are not integrated with the operating system. For example, the
HTTP file transfer protocol is not available to the standard UNIX open, read, write, and lseek calls.
Unitree does provide an NFS view into its file space, but the performance of the NFS interface is very poor
compared with alternatives that Unitree provides. ADSM can provide programmatic access to a file
space, but the ADSM API is not integrated into the UNIX kernel.

3.2 Access Transparency
The distributed nature of the HSM should not be visible to the user unless the user desires knowledge of
data locality for security or other reasons. Ideally, the user should not be aware of the fact that the HSM
system may be composed of servers that are physically distributed over a wide-area network. We have
designed the system to operate within a single high-level DNS namespace. Thus, at the highest level the
user is not aware of the distributed nature of the system. Access semantics via the filesystems interfaces
(NFS, DFS) remain the same regardless of which HSM Front End is used. Part of the unified namespace
is also a requirement for a unified authentication environment for the storage system. NSF access to the
system requires that the UNIX authentication namespace UIDs be made consistent across all servers and
clients, something difficult to accomplish within an environment with many administrative domains
(UCATS spans at least 7 administrative domains).

DFS provides a unified, cross-domain namespace. This enables a user to access files by the same UNIX
path regardless of the system being used, enabling application and user portability. Unfortunately, since it
is a global namespace, it can impose certain requirements on a pre-existing UNIX administrative domain.
Also, a unified namespace can obscure the underlying infrastructure of the storage system, leading to
mismatches between user expectations and achieved performance.

A primary determinant of user-perceived transparency is the potential difference in performance of local
vs. remote accesses to data. The UCATS system is designed to minimize potential performance
differences by

• providing large HSM front end servers at each site with considerable disk caching;
• interconnecting the clients workstations, front-end, and back-end servers via uniform high-speed

networking (i.e., ATM OC-3); and
• encouraging users to access the HSM system via local DFS filesystem clients with a large amount of

local disk. We expect to show that this two-level file caching scheme will improve client
performance considerably.

We have begun a series of experiments and simulations to determine the effects of WAN bandwidth on
typical applications performance. An early experiment will be to measure the access times for remote vs.
local HSM front ends. Extensive cache and buffer disk in both the HSM front end systems and the client
workstations support read caching and write buffering.

While transparency is generally considered a good feature of the system, occasionally a user may wish to
ensure that his/her data resides at a particular site. For example, the user may wish to physically remove
the media or avoid causing considerable WAN networking traffic (even if the performance would be
adequate). Providing a logical to physical mapping of the filesystems and system names, as well as the

5

ability to force data to reside on specific logical volumes, is required. Also required is the ability to flush
caches and buffers.

We may find that the user information and controls provided by standard DFS are not at a high enough
abstraction level to work in the context of HSM activity. For example, DFS may not expose to the user
whether a given file is available for immediate use on disk instead of requiring a tape mount. DFS may
not provide the user with information about the size of the caches involved so that the user could make
intelligent choices to avoid thrashing. These and other issues will be reported to the ADSM and DFS
development communities.

3.3 Benefits of Distribution
The primary benefits of a distributed HSM are uniform accessibility and higher performance data access.
Both of these are critical when a user is generating data at one site and analyzing the same data at another
site and is freed from explicitly moving data to achieve adequate performance for both tasks. In the
UCATS project many users are accessing or generating data from both their workstation or ImmersaDesk
at the University of Chicago and Argonne's IBM SP or CAVE environments.

Secondary benefits of distribution include the ability to replicate data at multiple sites for improved
performance or reliability and to provide redundancy of servers, allowing (in principle) one set of servers
to provide recovery capabilities for their remote siblings. By administering the system as a single logical
HSM, we also achieve commonality and scalability of systems support, user administration, and tool
development. With appropriate interfaces and SSA-via-ATM tunneling [9,10] it may be possible, for
example, to support twin-tailed disk interfaces on the ADSM servers via a WAN to provide distributed
fail-over capabilities.

Future development work is aimed at providing the ability to prefetch and permanently migrate large-
volumes of data from one server to another to reduce the real-time load on the WAN network and to
support load balancing the robots and backend servers. We believe that significant benefits of distributed
mass storage and HSMs will become apparent after the number of sites has been expanded to greater than
two (e.g., to all the sites in an NSF PACI collaboration or to all the DOE laboratories).

3.4 Reliability and Integrity
ADSM is a popular commercial-quality hierarchical mass storage system. When deployed in typical
configurations, it is highly reliable. The primary factor in potential reduction of reliability is the reliance
on the wide-area network for critical functionality. The HSM front ends can continue to operate without
constant contact with the ADSM servers, although staging and migration would wait for the contact to be
restored. DFS supports redundant servers for read-only data and provides client caching for read-write
data.

We are building on the reliability and integrity by choosing proven, commercial, off-the-shelf system
components. The research and development activities revolve primarily around configuration and
integration of those components. Our efforts will include tuning the components individually and in
concert with each other. We will report our experiences to the development communities of ADSM, DFS,
and other components in order that the future design of these components can be even more useful in
configurations and installations such as this.

6

4. System Description

4.1 Hardware
The IBM 3590 (Magstar) tape drive uses ½” cartridge tapes in the form factor of the traditional IBM 3480
tape cartridges. Each 3590 tape cartridge holds 10 GB of uncompressed data. The 3590 tape drive
provides transparent hardware tape compression and operates at a read/write rate of up to 14 MB/sec.
Initial experimentation indicates that the maximum seek time of a 3590 drive is approximately one minute
to anywhere on the tape, with the average around 30 seconds.

The IBM 3494 tape library is a robotic tape-changing system designed to work with tapes compatible with
the form factor of traditional IBM 3480 cartridges. Initial experimentation indicates that the time
required to select, mount, and cue a 3590 cartridge is approximately 25 seconds.

Currently we have two tape libraries, each with one 3590 tape drive and capacity for 600 3590 tapes. One
tape library will be located at the University of Chicago to support the local users there; the other library
will remain at Argonne National Laboratory to support the University of Chicago users of the Advanced
Photon Source.

4.2 System Software
The initial requirements for the library and tape management software were availability, ease of
configuration, and support for the devices. ADSM is a mature product in use in many sites across the
globe, lending confidence that it is reliable and robust.

ADSM does not support parallel tape reads and writes [11,12], a feature that could be useful for some
application areas. Sequential tape performance, through ADSM, is also limited because of buffer sizes
and other constraints. By recognizing these bottlenecks and performing simulations of various
configurations that include ADSM and front-end systems, we believe we can meet the needs of the
applications while reaping the benefits of the maturity and stability of ADSM.

4.3 Logical Configuration

UCATS is configured in a client/server architecture. There are three types of servers and three types of
clients, as shown in Fig. 1. Some servers act as clients; this is generally because the various types of
servers provide different services, and some servers need the services of other servers.

7

 ADSM HSM
Front End

ADSM Server
(a.k.a. ADSM Back End)

NFS/DFS
Translator

ADSM
via TCP/IP

DFS
via DCE RPC

Class A Clients:
ADSM API, ADSM

Backup/Archive/HSM

Class B Clients:
DFS, Type I NFS, FTP,
Other remote filesystems

Class C Clients:
Type II NFS, FTP, Other

remote filesystems

Servers Clients

Figure 1: Logical Client/Server Relationships

The ADSM server runs the IBM ADSM software to manage the tape drives and robots.

The HSM front end runs the IBM ADSM Hierarchical Storage Management software against a UNIX
filesystem. The HSM front end uses the services of one or more ADSM Servers. Each HSM Front End
has its own UNIX filesystems, which store the data that have not been migrated to an ADSM Server.
These UNIX filesystems also manage all of the filesystem metadata. Filesystem metadata are not used or
managed by the ADSM server. These UNIX filesystems can be used directly by processes running on the
HSM front end or can be exported to other client systems by various network protocols, including NFS,
DFS, and FTP.

An NFS/DFS translator is used to provide NFS access to DFS filesystems. DFS is used as the wide-area
filesystem. It provides a unified name space, client caching, and cryptographic security. Since not all
client systems will have DFS client capability, we provide an NFS/DFS Translator to allow client systems
logically nearby to benefit from the unified name space and other features of DFS.

Figure 2 shows how two clients, one at the University of Chicago and one at Argonne National
Laboratory, might use UCATS through the three classes of access.

8

ANL ADSM Server (RS/6000 59H)

36 GB
SSA Disk

30 TB
3494/3590 Tape

Uof C ADSM Server (RS/6000 59H)

18 GB
SSA Disk

5 TB
3494/3590 Tape

Argonne University of Chicago

ADSM HSM Frontend

SCSI Disk HSM
Filesystem

NFS/DFS Translator

 SCSI Disk
DFS Cache

ADSM HSM Frontend

SCSI Disk HSM
Filesystem

NFS/DFS Translator

 SCSI Disk
DFS Cache

University of Chicago
UCATS Client

Class C
Access

Class B
Access

Class A
Access

Argonne
 UCATS Client

Class A
Access

Class B
Access

Class C
Access

Figure 2: Example client interactions and data flows

4.4 Client Access Methods
There are three classes of clients, depending on the type of server being accessed.

Class A clients run the IBM-supplied ADSM Backup/Restore software, link against the ADSM
application programming interface, or run the ADSM Hierarchical Storage Management software against
a local filesystem. Each Class A client has its own independent relationship with one or more ADSM
Servers. Except in special cases, Class A clients do not directly exchange data with other Class A clients.
An HSM Front End is a special type of Class A client.

Class B clients are serviced by HSM front ends. This service is typically in the form of some network
protocol such as FTP, NFS, or DFS. To use FTP, the client user must have a user account on the HSM
front end. To use NFS, the client system must be in the same administrative domain and be on a local
network with the HSM Front End. Any Class B client using DFS can access any HSM front end,
regardless of whether the DFS client and HSM front end are logically “close” to each other on the
network.

Class C clients are serviced by NFS/DFS translators. These are systems that do not have the capability to
access DFS filesystems directly, but need access to the unified name space and distributed data services
that the DFS paradigm supplies. NFS/DFS translators act as DFS-protocol Class B clients.

9

4.5 Detailed Configuration and Environment

ANL ADSM Server (RS/6000 59H)

36 GB
SSA Disk

30 TB
3494/3590 Tape

ADSM HSM Frontend

 (RS/6000 43P)

200 GB

SCSI Disk

ADSM HSM Frontend
 (RS/6000 43P)

100 GB
SCSI Disk

Uof C ADSM Server (RS/6000 59H)

18 GB
SSA Disk

5 TB
3494/3590 Tape

Cisco
Lightstream
ATM Switch

Cisco
Lightstream
ATM Switch

Metropolitan Research
& Engineering Network
ATM OC-3 (155Mbit/s)

Argonne Fast
Networks

UofC Fast
NetworksCAVE Automatic

Virtual Reality
Systems

IBM SP2
Supercomputer

Advanced Photon
Source Experimental

Facilities

ImmersaDesk Virtual
Reality Systems

Scientific
Visualization
Workstations

Calculation and
Analysis Systems

Argonne University of Chicago

Figure 3: UCATS Configuration Detail and Environment

5. Simulation Project

ADSM has a variety of parameters that can be tuned to improve performance. In addition, basic
throughput analysis can be used to help size the disk caches and buffers in the system. We are developing
an HSM simulator [13,14,15,16] that will enable us to explore the impact of cache and buffer sizes,
number of servers and placement of servers on a variety of job mixes.

Working with the simulator is helping us to understand key issues of system behavior, such as workload.
Our initial simulations are small; the strategy is to gradually simulate larger, more complex
representations of the UCATS system.

10

5.1 Design and Implementation

We have designed our simulator with special emphasis on flexibility because it is intended as a tool to
help us explore implementation issues for the present storage system and for more complex distributed
systems. We are writing it in an object-oriented language (C++), hoping to enjoy the benefits of ease of
expansion and change and a clean encapsulation of basic functions and relationships. This approach
makes for a concrete mapping of system components into simulated component objects: it is a
straightforward matter to simulate different architectures.

The two main aspects of the simulation -- the workload model and the system model -- are handled
separately to facilitate flexibility in design and testing. The system model includes objects for disks, tape
drives, HSM front ends, ADSM server, tape robot, data caches, and data chunks. The workload is
simulated by objects for clients of various types (see below). Communication between the two parts of the
simulation is effected by objects representing jobs and job queues. Clients generate jobs and submit them
to queues. These in turn drive the simulated system hardware.

The simulation is managed by scanning activities at fixed time intervals. The list of objects needing
attention is scanned randomly at each time step. The overhead of scanning during intervals when nothing
is going on is very small, and so the approach is quite efficient. On the other hand, many activities in the
simulation are amenable to an event-driven approach: we compute, for example, when a given disk
operation will be complete. The simulation might ultimately benefit from a hybrid approach wherein
events are used to determine the size of variable time steps.

To calibrate various parameters within the components of the system model, we perform experiments with
the hardware. These yield seek times, tape load time, transfer rates, and other aggregate parameters.

We have tested the system simulator at various stages of its development against a simple stochastic
workload composed of Class A and Class B clients. With these experiments we have verified basic
behaviors of the system: contention for disk and tape drives, data staging and migration, and cache
function.

5.2 Workload
It is much harder to arrive at a model for handling the vagaries of the workload. This is not our problem
alone: in simulations of real systems this is generally true. The chief sources of our difficulty are
that (1) we have little a priori knowledge about the individual client application characteristics, and (2)
the targeted diverse clientele guarantees complicated descriptions of job mix.

The initial stochastic model that we used to verify the basic operation of the system simulation proved to
be too simple.

Our experience with the system and with the science clients has led to a compact and practical method for
modeling the workload. We intend to model several workload archetypes or atoms that represent
attributes of a dataset and use pattern.

11

Our working set of these atomic workloads is characterized as follows:

Large, flat, high-throughput High-end visualization applications driven by large
undifferentiated datasets: e.g., Visible Human data

Large, flat, small-transfer Low-end random access of small chunks of data
(e.g., second-grade children accessing a digital
library through a browser)

Large, with good metadata High-end visualization, or query language,
characterized by high proportion of hits on a well-
defined metadata (e.g., astronomy database)

Backup and archive Throughput is important, but often can be done
during non-peak time

Basing our workload model on atoms helps in guiding measurements of real workloads, iteratively
adjusting the workload atomic model parameters, and systematically calibrating realistic workload mixes.

Workload System Behavior

Blkmove 56600 32312 4332 1433288
client7 97234 23412 1234 3412363
node3 98241 3921 4321 8874 32173
Blkmove 56600 32312 4332 1433223
client7 97234 23412 1234 3412377
node3 98241 3921 4321 8874 32143
Blkmove 56600 32312 4332 1433245
client7 97234 23412 1234 3412383
node3 98241 3921 4321 8874 32145
Blkmove 56600 32312 4332 1433232
client7 97234 23412 1234 3412377
node3 98241 3921 4321 8874 32143
node3 98241 3921 4321 8874 32162
Blkmove 56600 32312 4332 1433243
client7 97234 23412 1234 3412363
node3 98241 3921 4321 8874 32145

Simulated:

Real:

Workload
Synthesis

Capture Traces
of Actual Use

System
Simulator

Drive/Observe
Actual System

OR ORJob File

 Figure 4: Standard Job File for Simulation and Evaluation

Figure 4 shows the relationship between the workload synthesizer and the system simulator. These two
simulator portions will communicate through an intermediate file consisting of the sequence of job
requests. With this architecture, we can easily perform a number of useful experiments, that will help us
to calibrate the various pieces of the simulator. By driving both the system and the system simulator with

12

the same job file, we can directly compare simulator with real-world performance— an important
technique for validating the simulator. This division will also allow direct comparison of the workload
simulator with job files generated by monitoring the real system, invaluable in calibrating our workload
models.

6. Future Directions and Conclusions

We are investigating three areas that should improve performance and/or minimize WAN traffic. First,
we are developing simple mechanisms to support third-party transfers when the client and HSM front end
servers are on opposite sides of a WAN connection. Second, we are developing software to track user
access patterns in the data to enable data migration decisions. For example if a user repeatedly is
accessing data stored on an remote ADSM server, resulting in repeated transfers due to local cache
capacity limits, we mark these data as a candidate for automigration to the "local" ADSM backend so that
future requests will not result in WAN traffic. Third, we are experimenting with migrating the logical
HSM front end from one site to another. This strategy can reduce networking traffic when a large data set
read from the ADSM backend is being cached to the HSM front end but when the user access pattern is
sparse; thus, by moving the assigned HSM front end from local to remote, we reduce the networking
traffic to just the data being requested by the user, rather than the full dataset. Currently ADSM does not
support many of these capabilities. We are investigating extensions to ASDM servers to support this
advanced functionality.

With this system we have an opportunity to provide exceptional service to our clients and to investigate
the behavior and performance of a distributed storage system built from off-the-shelf technology. By
providing service to real users, we will validate (or be forced to re-evaluate!) our expectations for user
access patterns. We will be able to evaluate the current distributed storage technology in a real-world
situation and have actual experiences to share with the various development communities, along with
other groups building distributed storage systems.

References

[1] Grossman, R. L., et al., “A Prototype of a Digital Library for Numerical, Statistical, and Scientific
Data and Application to the Federal Budget,” Proc. Digital Libraries 1994: Conf. Theory and Practice of
Digital Libraries, ACM, 1994.

[2] IBM Corporation. ADSM – Product Overview.
http://www.storage.ibm.com/stssorage/software/adsm/adprov.htm

[3] Foster, I., Geisler, J., Nickless, W., Smith, W., and Tuecke, S., “Software Infrastructure for the I-
WAY High-Performance Distributed Computing Experiment,” in Proc. 5th IEEE Symp. On High
Performance Distributed Computing., IEEE Comptuer Society Press, 1996, pp. 562-571.

[4] DeFanti, T., Brown, M., and Stevens, R., “Virtual Reality over High-Speed Networks,” in IEEE
Computer Graphics and Applications, Volume 16, Number 4, 1996, pp. 42-43.

[5] DeFanti, T., Papka, M., and Stevens, R., eds., “I-WAY: Wide Area Supercomputing Applications,’’
special issue of The International Journal of Supercomputer Applications and High Performance
Computing, Volume 10, Number 2/3, Summer/Fall 1996.

[6] The ATM Forum, Educational Module: ATM Basics.
http://www.atmforum.com/atmforum/atm_basics/notes1.html

13

[7] Academic Computing Services, Networking Services & Information Technologies, The University of
Chicago, 1996. http://www.uchicago.edu/a.resource-guide/ss.s-hpm.html

[8] Open Software Foundation, OSF DCE DFS Administration Guide and Reference, Revision 1.1.
Prentice Hall PTR, Upper Saddle River, New Jersey, 1995.

[9] RFC 1701 Generic Routing Encapsulation (GRE).

[10] RFC 1702 Generic Routing Encapsulation over IPv4 Networks.

[11] Coyne, R. A., and Hulen, H., “An Introduction to the Mass Storage System Reference Model,
Version 5,” Proc. 12th IEEE Symp. Mass Storage, Monterey, CA, IEEE Computer Society Press, April
1993.

[12] Coyne, R. A., Hulen, H., and Watson, R. W., “The High Performance Storage System,” in Proc.
Supercomputing 93, Portland, OR, IEEE Computer Society Press, Nov. 1993.

[13] Conte, T. M., and Gimarc, C. E., Fast Simulation of Computer Architectures, Kluwer Academic
Publishiers, 1996.

[14] Ferrari, D., Serazzi, G., and Zeigner, A., Measurement and Tuning of Computer Systems, Prentice-
Hall, Englewood Cliffs, New Jersey, 1983.

[15] Krishna, C. M., ed., Performance Modeling for Computer Architects, IEEE Computer Society Press,
1996.

[16] Harrison, P. G., and Patel, N. M., Performance Modeling of Communications Networks and
Computer Architectures, Addison-Wesley, New York, 1993.

14

15

