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Foreword

viii

This report documents the methodologies and results of Argonne National
Laboratory’s assessment of additional capital needs and fuel-cycle energy and emissions
impacts associated with using various fuels in vehicles that are three times as fuel-
efficient as today’s typical light-duty vehicles. These “3X vehicles” are being developed
in the Partnership for a New Generation of Vehicles (PNGV) program. In 1994, the
National Research Council’s Peer Review Committee on the PNGV program called for
an assessment of the potential impacts of 3X vehicles on the fuel infrastructure. In
response, the U.S. Department of Energy (DOE) tasked Argonne National Laboratory
(ANL) to investigate these impacts. In August 1995, the results of a preliminary analysis
were presented to the Peer Review Committee. In January 1997, the results of the first
phase of Argonne’s analysis were published. The second phase of Argonne’s analysis,
which covers additional fuels and issues identified during the phase 1 effort, is
documented in this report.
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Abstract

Argonne National Laboratory assessed the incremental capital needs and fuel-cycle
energy and emissions impacts of using each of 11 different fuels in light-duty vehicles
with tripled fuel economy (referred to as 3X vehicles). These 3X vehicles are being
developed by the Partnership for a New Generation of Vehicles (PNGV). Findings
indicate that investments in new fuel-production and -distribution facilities could be
relatively modest for alternatives that are relatively similar to conventional fuels
(e.g., reformulated gasoline or diesel, or relatively high percentage blends of those fuels).
By contrast, alternative fuels with little established infrastructure tend to require far more
capital investment. These higher cost alternatives do, however, provide greater energy
and environmental benefits.




Summary

This report presents the methodologies and results of Argonne National
Laboratory’s assessment of the incremental capital needs and fuel-cycle energy and
emissions impacts of using each of eleven different fuels in vehicles with tripled fuel
economy (3X vehicles). These 3X light-duty vehicles are being developed by the
government-industry Partnership for a New Generation of Vehicles (PNGV). Eleven
fuels were included in the assessment: reformulated gasoline (RFG), reformulated diesel
(RFD), methanol, ethanol, dimethyl ether (DME), liquefied petroleum gas (LPG),
compressed natural gas (CNG), liquefied natural gas (LNG), biodiesel, Fischer-Tropsch
diesel, and hydrogen. RFG, methanol, ethanol, LPG, CNG, and LNG were assumed to be
burned in spark-ignition, direct-injection engines. RFD, Fischer-Tropsch diesel,
biodiesel, and dimethyl ether were assumed to be burned in compression-ignition, direct-
injection (CIDI) engines. Hydrogen, RFG, and methanol were assumed to be used in
fuel-cell vehicles.

Impacts to the infrastructure that produces and distributes each of these fuels were
analyzed under high and low scenarios of potential 3X vehicle market penetration. The
scenarios established supply requirements (i.e., the volume of each fuel needed to meet
the demands of all 3X vehicles likely to be on the road in each year of the analysis),
which were used to specify the number and type of new facilities needed in each year.
The cost analysis then translated facility requirements into capital costs. Results indicate
that substantial capital investment will be needed to build new fuel production plants and
to establish distribution infrastructure for methanol, ethanol, dimethyl! ether, hydrogen,
and CNG. With the exception of CNG and, to a certain extent, LNG, capital needs for
production facilities far exceed those for distribution infrastructure for all fuels studied.
Among the eleven fuels, hydrogen has the largest capital needs, with DME and, under
certain assumptions, CNG distant runners up.

The fuel efficiency gain by 3X vehicles translated directly into reductions in total
energy demand, fossil energy demand, and greenhouse gas (primarily CO2) emissions.
The combination of fuel substitution and fuel efficiency resulted in substantial petroleum
displacement and large reductions in urban emissions of volatile organic compounds and
sulfur oxide for all propulsion system/fuel alternatives considered. Although urban
emissions of particulate matter smaller than 10 pwm rose for CIDI engines operating on
RFD, biodiesel, and Fischer-Tropsch diesel, such increases did not occur for CIDI
engines operating on dimethyl ether. Fuel-cell vehicles produced large reductions in
urban emissions of nitrogen oxide and carbon monoxide; compression-ignition engines
operating on RFD, dimethyl ether, Fischer-Tropsch diesel, or biodiesel were also
estimated to produce substantial reductions in urban emissions of carbon monoxide.




Section 1
Introduction

In September 1993, the U.S. government and the U.S. Council for Automotive
Research (USCAR), representing Chrysler, Ford, and General Motors, formed the
Partnership for a New Generation of Vehicles (PNGYV). This joint research and
development effort aims to (1) significantly improve national competitiveness in
automotive manufacturing; (2) implement commercially viable innovations from ongoing
research on conventional vehicles; and (3) develop vehicles that can achieve up to three
times the fuel economy of today’s vehicles, which would be about 80 miles per gallon
(mpg) for six-passenger automobiles. These three-times-efficient (often called 3X)
vehicles (goal three) must also meet the safety and emissions requirements expected to
be in place when they are introduced, as well as provide the same performance, size,
utility, and cost of ownership/operation as the conventional vehicles that they replace.

To develop 3X vehicles, the PNGV program has been focusing on the development
and use of advanced automotive technologies and lightweight materials. These
technologies could be incorporated into spark-ignition, direct-injection (SIDI) engines,
compression-ignition, direct-injection (CIDI) engines, or fuel cells. To meet emissions
goals or to provide the optimum fuel for these new propulsion systems, fuels other than
gasoline or diesel fuel could be necessary.! If development of 3X vehicles is successful,
there may be changes in automotive manufacturing, materials production, and fuel
production and distribution. Those changes will produce additional perturbations in
energy consumption and emissions.

Recently, the PNGV program completed a process to select technology options for
further investigation. Four key areas were chosen for intensified R&D efforts: hybrid-
electric-vehicle (HEV) drive, direct-injection (DI) engines, fuel cells, and lightweight
materials.? Research on HEV drive is focusing on energy storage and increasing the
efficiency of both power sources. High-power nickel-metal hydride, lithium-ion, and
lithium-polymer batteries are particularly promising energy storage technologies that
could be used in conjunction with HEV designs. Research on direct-injection engines is
also related to HEV applications because efficient compression-ignition direct-injection

In addition to new fuels and/or propulsion systems, a 40% reduction in vehicle weight may be
needed. Research on lightweight materials is focusing on increased use of aluminum,
magnesium, titanium, and composites.

HEV drivetrain designs incorporate two power sources: one generates energy from fuel stored
on board, the other is an electric motor that gets energy from the first source and/or from an
advanced energy storage device. HEVs can be designed to operate efficiently on both sources, as
well as to capture energy now lost in braking to further improve energy efficiency.




(CIDI) engines are promising candidates for near-term HEV application.? Regardless of
configuration, engine emissions are perhaps the greatest obstacle to the widespread use
of CIDI engines. R&D efforts are now under way to lower CIDI engine emissions. Over
the longer term, fuel cells could be used in HEVs to offer near-zero vehicle emissions.
Fuel cells can generate electricity from such fuels as hydrogen, compressed natural gas,
gasoline, methanol, or ethanol stored on-board the vehicle.

1.1 NRC Peer Review of the PNGV Research Program

The National Research Council (NRC), a part of the National Academy of Sciences,
has created a standing committee to provide peer review of the PNGV research program. -
That Committee has evaluated the progress of the PNGV program each year since 1994.
In its first annual report, the NRC Peer Review Committee noted a “very high probability
that the PNGV concept vehicle will use technologies that will result in technological
discontinuities with many of today’s automotive technologies.” (NRC 1994) The
Committee foresaw the potential for discontinuities in vehicle manufacturing and in the
road transportation system as a result of new materials, power trains, or fuels that, in
turn, could affect capital requirements, employment, environmental consequences, and
the safety and cost of vehicle operations. The Committee cited two examples that could
result in such discontinuities: use of hydrogen in place of gasoline as a vehicle fuel and
use of advanced, lightweight, nonmetallic materials in place of conventional iron and
steel in vehicles. Consequently, the Committee stressed the need for in-depth assessment
of changes that could occur in “infrastructure, capital requirements, shifts in
employment, total environmental consequences, alternative safety strategies, and total
cost of operation associated with each technology being explored in the PNGV program”
(NRC 1994).

Responding to the Committee’s concerns, Argonne National Laboratory (ANL),
together with Oak Ridge National Laboratory (ORNL), conducted a preliminary
assessment for the Office of Advanced Automotive Technologies (OAAT) in the
U.S. Department of Energy (DOE) to quantify major impacts resulting from the
commercialization of 3X vehicles. ANL analyzed fuel-related infrastructure issues, while
ORNL was responsible for lightweight-materials-related infrastructure issues. ANL
defined first-order effects for advanced automotive technologies, quantified potential
demand for PNGYV fuels other than gasoline or diesel oil, and explored the importance of
the length of the transition period. Results of that preliminary assessment were presented
to the NRC Committee and were later published in the proceedings of the
29th International Symposium on Automotive Technology and Automation (ISATA)
(Wang and Johnson 1996).

In its second annual review report, the NRC Peer Review Committee emphasized
the need for continuing the infrastructure analysis (NRC 1996). The Committee observed

> DI engines in stand-alone configuration are subject to the same emissions problems (i.e., high
engine-out emissions of NO, and toxics).
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that “modifications to the current vehicle infrastructure associated with changes in safety
criteria, automotive service industries, fuel use and vehicle-operator interactions have
important implications for market acceptance of a PNGV-type vehicle.” The Committee
called for “a study to establish the energy balance, in-use environmental effects, and
resource requirements, as well as the production and distribution costs, for any fuels
other than gasoline or diesel fuel being considered for use in Goal 3 vehicles” and stated
that “due attention must be given to the total environmental impacts, including in-use
emissions and energy consumption in fuel production and distribution.” The Committee
stressed that a careful assessment of infrastructure issues associated with alternative
technologies should be an essential part of the downselect process scheduled for 1997.

In 1996, with funding from DOE’s OAAT, Argonne continued its efforts to analyze
issues related to PNGV fuels infrastructure. In particular, ANL estimated capital
requirements for the facilities to produce and distribute several candidate fuels to be used
in 3X vehicles. Six fuels were included in this so-called Phase 1 analysis: reformulated
gasoline (RFG), low-sulfur diesel, dimethy! ether (DME), methanol, ethanol, and
hydrogen. Using the GREET (Greenhouse gas emissions, Regulated Emissions, and
Energy use in Transportation) and IMPACTT (Integrated Market Penetration and
Anticipated Costs of Transportation Technologies) models, both of which were
developed at Argonne, ANL estimated the fuel-cycle energy and emissions impacts of
introducing 3X vehicles powered with each of the six fuels. The Phase 1 results were
presented to the PNGV Review Committee at its third annual review meeting. Details
regarding methodologies, assumptions, and results of the Phase 1 effort were
documented in a later report (Wang et al. 1997a).

In its third and fourth annual review reports (NRC 1997 and NRC 1998), the PNGV
Peer Review Committee reiterated its concern about the environmental and economic
impacts of PNGV vehicles and their potential effect on fuel infrastructure. In its third
annual review, the Committee stated that “it is important that the power plant
configurations and fuel types being considered are accurately represented and evaluated
with suitable infrastructure models as an integral part of the downselect process of the
PNGYV technologies.” The Committee further asked that the GREET model be used with
specific engine and fuel configurations in various downselect scenarios. Finally, in its
fourth annual report, the Committee emphasized the need for extensive investigation of
the feasibility, economics, and environmental impacts associated with production and
distribution of PNGV fuels.

In 1997, ANL continued to analyze PNGV fuels infrastructure issues. Responding
to comments from the automotive and fuels industries (as well as from the Peer Review
Committee), ANL included six additional fuels in its so-called Phase 2 effort:
reformulated diesel (RFD), compressed natural gas (CNG), liquefied natural gas (LNG),
liquefied petroleum gas (LPG), biodiesel, and Fischer-Tropsch (F-T) diesel. ANL delved
further into the specific impacts of fuel-cycle energy use and emissions, separating
emissions of criteria pollutants into total emissions and urban emissions and estimating
emissions of all three main greenhouse gases (CO,, CHy, and N7O). In the area of capital
requirements, ANL expanded its initial estimates of total capital needs for fuel




production and distribution infrastructure to generate cost estimates for each year
between 2007 and 2030 under two potential 3X vehicle market penetration scenarios and
estimated each fuel’s per-gallon increment associated with those costs. Table 1.1
compares the scope of ANL’s Phase 1 and Phase 2 efforts. This report documents the
methodologies, assumptions, and results of the Phase 2 effort.

Table 1.1 Scope of ANL’s PNGV Fuels Infrastructure Analysis: Phases 1 and 2

Phase 1 (1996) Phase 2 (1997)
Fuels RFG, LSD, MeOH, EtOH, DME, H> RFG, RFD, MeOH, EtOH, DME, Hp, CNG,
LNG, LPG, biodiesel, F-T diesel
Capital requirements Two snapshot estimates of total Estimates of annual capital requirements
capital requirements under two market penetration scenarios;
$/gal cost estimates
Fuel-cycle energy and emissions Energy use: total energy, fossil Same
estimation energy, and petroleum

Criteria poliutants: total emissions  Criteria pollutants: total and urban emissions

GHGs: CO, GHGs: COy, CHg, and NoO

1.2 Study Scope and Approach

This analysis, sponsored by DOE/OAAT, focused on two infrastructure issues: the
cost to build/put into place the fuel production and distribution infrastructure needed for
each of the fuels under consideration for 3X vehicles and the fuel-cycle energy and
emissions impacts of using each of those candidate fuels. As a point of departure, this
study assumed that technological obstacles will be overcome; that is, the PNGV’s
primary goal of tripling fuel economy will become an engineering reality for all
fuel/engine combinations being considered. This is consistent with PNGV goal three. In
all likelihood, however, the PNGV program will aid in the development and introduction
of some intermediate technologies that, though failing to achieve the 3X goal, will
provide significant improvements in vehicle fuel economy (e.g., 2 times fuel economy
improvements). A practical issue in analyzing programs like the PNGV is whether to
assume that intermediate technologies provide the opportunity for initial market
introduction and the basis for incremental improvements to the technology, or whether
market introduction must await full achievement of technological goals, which, by
definition, limits the analysis to more advanced technologies. There are no easy answers
to this issue, but if intermediate technologies are to be considered, the PNGV program
will have to rethink its schedule for introducing PNGV technologies.

For this analysis, the two infrastructure issues dictated two largely discrete
approaches. To estimate the capital requirements of establishing fuel production and
distribution infrastructure, it was first necessary to estimate the annual fuel needs of all
3X vehicles expected to be on the road. To do so, two broadly dissimilar 3X vehicle
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market penetration scenarios were specified to cover a relatively broad range of potential
market acceptance of new 3X vehicles. These scenarios were run through ANL’s
IMPACTT model to estimate the stock of 3X vehicles and their fuel demand for each
year from 2007 through 2030. For each fuel, production technologies and distribution
infrastructures were then characterized and appropriate unit costs were developed.
Capital requirements for the determined fuel production and distribution infrastructure
could then be estimated as a function of unit costs and production/throughput volumes.

To estimate energy and emissions impacts of 3X vehicles, the GREET model was
run to generate rates of energy consumption and emissions (i.e., Btu/mi and g/mi) by
engine and fuel type, and the IMPACTT model was run to generate estimates of (1) total
energy and emissions for a base or reference scenario without 3X vehicles, (2) energy
and emissions by conventional vehicles still on the road under the two market
penetration scenarios, and (3) energy and emissions by 3X vehicles incorporating each
fuel/engine combination under those scenarios. The energy and emissions impact of each
fuel/engine combination was then the difference between the reference scenario value
and the sum of a conventional vehicle component and a 3X vehicle component
corresponding to that fuel/engine alternative.

Note that each candidate PNGV fuel/engine combination was assumed to compete
solely with conventional vehicles in the light-duty-vehicle marketplace. This approach
was adopted for three reasons. First, if a mix of PNGV fuels and vehicle technologies
were to compete with one another, as well as with conventional vehicles, results would
show the aggregate effects of the mix, not the effects of each technology. It is the latter
that is of interest here. Second, this analysis is intended to identify the maximum
infrastructure impacts of introducing a given fuel or technology. By definition, the
individual components of a mix are less than the sum. Third, historical precedent
suggests that one advanced technology will achieve market dominance after initially
vigorous competition. It matters not why dominance occurs — whether because of the
superiority of the winning technology itself, the cost to establish and maintain
infrastructure for multiple technologies, or simply inefficiencies of scale — only that
market penetration assumptions be consistent with its occurrence.

The analytic time frame of this study is between 2007 (three years after completion
of the research and development for 3X vehicles) and 2030 (when a significant portion
of the light-duty fleet could be expected to be composed of these highly efficient
vehicles). The study therefore assumed that 3X vehicles will be introduced beginning in
2007 and that 3X vehicle sales will increase steadily to a defined maximum sales target.




Section 2
Development of 3X Market Share Scenarios
and Technology Assumptions

Clearly, the impacts of 3X vehicles depend not only on engine technology and fuel
choice, but also on how quickly and completely they penetrate the light-duty-vehicle
market. If penetration is rapid and complete, there is little time to make the kinds of
infrastructure adjustments needed to accommodate different propulsion systems and
fuels. Conversely, if penetration is slower and appears more predictable, deliberate
planning is possible. To explore a range of 3X impacts, three market penetration
scenarios were postulated. The scenarios include a base or reference scenario depicting a
future without 3X vehicles and two market share scenarios bracketing a range of 3X
vehicle sales. Thirteen combinations of fuels and propulsion systems were examined in
the context of the two market-share scenarios.

2.1 Sales of New Light-Duty Vehicles

The vehicle sales forecast used in all three scenarios was taken from the Energy
Information Administration’s 1997 forecast of transportation energy demand through the
year 2015 and extrapolated to 2030 (EIA 1996a). This forecast assumes 1.9% per year
growth in gross domestic product (GDP), relatively low world oil prices (rising from
$17.26 in 1995 to only $20.98 per barrel by 2015 [all in 1995 dollars]), continued growth
in the number of licensed drivers, and moderate increases in new light-duty-vehicle sales
and fuel economy. Under this forecast, new car sales increase from 9.31 million with a
rated fuel economy of 28.3 mpg in 1995 to 10.55 million rated at 34.3 mpg in 2030; new
light-truck sales increase from 5.88 million rated at 20.4 mpg in 1995 to 7.76 million
rated at 26.3 mpg in 2030.

2.2 Market Penetration of 3X Vehicles

The 3X vehicle market share scenarios retain the basic parameters of the reference
scenario (e.g., energy prices, economic growth, overall vehicle sales) but allow such
market factors as the level of technology maturity and consumer preferences to vary.
Since each of these factors is subject to some uncertainty, two extreme sets of conditions
could materialize. Under one set, every factor favorable to 3X vehicles’ market success
could occur, resulting in rapid consumer acceptance and high sales of new 3X vehicles.
Alternatively, some factors may not be as favorable to market success, resulting in
slower early acceptance and low-to-moderate sales of new 3X vehicles. Historical
precedents can be found for extremely rapid market acceptance, relatively slow market
acceptance, and for many intermediate levels between these two. For example, the
market experience of front-wheel drives and downsizing (i.e., weight reduction) provide
some insight into just how rapid market penetration could be. In the United States, the
market share of front-wheel drives increased from virtually zero to §0% of new
passenger cars between 1976 and 1992, a span of 16 years (Figure 2.1).
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Figure 2.1 Market Share of Front-Wheel-Drive Autos in the United States
(based on Murrell et al. 1993)

Light-duty-vehicle (LDV) weight reduction (and the many technologies incorporated
therein) has been equally dramatic, with average inertia weight declining by more than
20% between 1976 and 1980 (Figure 2.2). Since a transition to 3X vehicles — involving
changes in power systems, materials, and fuels, even as conventional vehicles are
produced — is a more complex proposition than introducing either of these technologies,
the penetration curves shown in Figures 2.1 and 2.2 provide an indication of the upper
limits to market penetration of 3X vehicles.

The mid case for 3X vehicle sales developed by DOE’s Policy Office for the Policy
Dialogue Advisory Committee (the “Car Talk” Committee) (Resolve, Inc. 1995) is
another example of relatively rapid penetration. Under that case, 3X sales achieve a
lower ultimate share than front-wheel-drive vehicles or the technologies used to achieve
a 20% weight reduction, but penetration is still relatively rapid in terms of the ability of
the vehicle manufacturing industry to adapt to such a production shift. For this reason,
the mid case was modified slightly for this analysis, extending the timeframe over which
the market penetration target is achieved. Thus, the “Car Talk” mid case was modified to
produce the high-market-share scenario in which 3X vehicles enter the new light-duty-
vehicle market in 2007 and take over 20 years to achieve a 60% market share.

As compared with the high-market-share scenario, the low-market-share scenario
assumes a later introduction of 3X vehicles and a slower rate of increase in their sales.
Under this scenario, 3X vehicles are assumed to enter the market in 2013, six years later
than in the high-market-share scenario, and to capture a 30% share of the new LDV
market by 2030. The low-market-share scenario is similar to the market penetration of
diesel cars in France in the 16 years between 1973 and 1989 (Figure 2.3). Table 2.1 and
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Figure 2.2 Weight Reduction and Fuel Economy Improvement of New
Automobiles in the United States (fuel economy relative to 1995 standard
of 27.5 mpg) (based on Murrell et al. 1993)

Figure 2.4 illustrate the share of new vehicle sales represented by 3X vehicles under the
two scenarios.

For both market share scenarios, each PNGV fuel/engine combination is assumed to
have the same market penetration, to compete solely with conventional vehicles (not
with one another), and therefore to account for all of the impacts identified. Because
competing technologies are set aside for separate fuel/engine comparisons, this
assumption provides the basis for analyzing the maximum impact of each technology.

2.3 Sales and Stocks of 3X Vehicles

As stated above, EIA’s 1997 forecasts of new car and light-duty-truck (LDT) sales
were used to represent total light-duty-vehicle (LDV) sales in the reference scenario and
in each of the two market share scenarios. Sales of new 3X vehicles were then estimated
as the product of sales and sales shares for cars and LDTs. Note that this implicitly
assumes that 3X technologies achieve the same penetration of car and LDT markets, and
that 3X LDTs (vans, sport utility vehicles, and pick-ups) achieve the same share of the
3X LDV market as conventional LDTs achieve of the conventional LDV market.

Because of several revisions in input parameters (some of which were offsetting),
the number of 3X vehicles expected to be on the road and their fuel use and emissions
differ somewhat between Phases 1 and 2 of this study. In Phase 1, total auto and LDT
sales were based on EIA’s 1996 forecast (Chien 1996, EIA 1996b). For Phase 2, these
assumptions were updated with EIA’s 1997 forecast (Chien 1997, EIA 1996a), which
assumes slightly higher LDV sales in the short term, considerably lower sales in the long
term (between 2010 and 2015), and lower conventional vehicle fuel economy. Since new
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Figure 2.3 Sales Share of New Diesel Cars in France

Table 2.1 3X Share of New Light-
Duty Vehicle Sales by Scenario

High Market Low Market
Share Share

Year % Share % Share
2006 0.0
2007 0.1
2008 03
2009 0.6

T 2010 1.0
2011 1.6
2012 2.4 0.0
2013 3.7 0.5
2014 5.8 1.1
2015 9.0 1.7
2016 13.0 241
2017 17.0 2.6
2018 21.0 3.2
2019 25.0 3.9
2020 29.0 4.8
2021 33.7 5.8
2022 38.4 7.1
2023 43.1 87
2024 47.8 10.6
2025 52.5 12.8
2026 56.6 15.4
2027 58.7 18.4
2028 59.5 21.8
2029 59.8 257
2030 60.0 30.0

vehicle sales in the outyears of the EIA
forecast were extrapolated to 2030 for this
study, the lower long-term sales resulted in
approximately 10% fewer 3X vehicle sales in
2030 and approximately 7% fewer 3X sales
over the entire forecast period (See Table 2.2).

The procedure used to forecast the fleet
of 3X and conventional vehicles expected to
be on the road in future years was essentially
unchanged in Phase 2. As in the Phase 1
analysis, annual forecasts of 3X market
penetration, new LDV sales, and an assumed
split between auto and light truck sales were
key inputs to the IMPACTT model, which was
used to calculate 3X and conventional vehicle
stocks and operational energy consumption for
each year from 2007 to 2030 (Mintz et al.
1994). Within IMPACTT, a vintaging
procedure adjusted a base year vehicle
population — adding new vehicles, scrapping
or aging others — to produce forecasts of the
future light-duty-vehicle fleet by type (auto or
light truck), age, and technology (3X or
conventional). The resulting estimates of 3X
vehicle stocks, expressed as percentages of
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Figure 2.4 Market Share Scenarios for 3X Vehicles

total LDV stocks, are shown in Figure 2.5. Note that even under the high-penetration
scenario, 3X vehicles still account for only a little over 40% of total LDV stocks in 2030.
This occurs because the turnover of the LDV fleet, which consists of long-lived durable
goods (i.e., vehicles), is very slow, typically requiring many years for the characteristics
of the vehicle stock to reflect those of new additions to the fleet.

2.4 Fuel Savings Potential

Energy used in the operation of light-duty vehicles was estimated for three
scenarios: the reference scenario (without 3X vehicles), the low 3X-market-share
scenario, and the high 3X-market-share scenario. As described above, EIA’s projections
of new LDV fuel economy were used for 1996-2015 and were extrapolated to 2030
using EIA’s growth rate between 2010 and 2015. Under the reference scenario, fuel
economy for new cars and light trucks thus increases from 27.5 and 20.2 mpg in 1995 to
34.3 and 26.3, respectively, in 2030 (as compared to 35.4 and 26.5 mpg in the earlier
EIA forecast used in Phase 1). Because there is no comparable reduction in 3X fuel
economy, the percent of operational energy savings attributable to 3X vehicles is thus
slightly greater in Phase 2, even though the quantity consumed is less. Estimates of
energy use by 3X vehicles, in Phases 1 and 2, are shown in Table 2.3.

Note that energy consumed in the operation of the 3X vehicle fleet is determined
not only by the number of 3X autos and light trucks on the road and their fuel economy,
but also by annual utilization. Although utilization rates and survival probabilities are
assumed to decline with vehicle age, within a particular age range both 3X and
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Table 2.2 New 3X Vehicle Sales by Market Share Scenario, Phases 1 and 2 (10%)

Phase 1 Phase 2
High Market Share Low Market Share High Market Share Low Market Share
Light Light Light Light
Year Auto Truck Total® Auto Truck Total® Auto Truck Total?2 Auto Truck Total®
2007 9 7 17 10 8 18
2008 29 22 50 30 23 52
2009 58 45 102 59 45 104
2010 97 75 172 99 75 174
2011 151 118 269 159 120 279
2012 236 184 420 240 181 420
2013 370 290 659 49 39 88 372 279 651 50 38 88

2014 679 455 1,034 110 86 196 587 439 1,026 111 83 195
2015 904 709 1,613 169 133 302 908 677 1,585 172 128 299
2016 1,325 1,024 2,349 212 164 376 1,316 979 2,295 213 158 371
2017 1,760 1,338 3,098 266 202 467 1,727 1,283 3,009 264 196 460
2018 2,208 1,651 3,859 332 248 581 2,140 1,887 3,727 326 242 568
2019 2,669 1,964 4,633 415 305 720 2,556 1,892 4,448 399 295 694
2020 3,144 2,275 5,419 517 374 892 2,975 2,198 5,173 492 364 856
2021 3,710 2,641 6,351 644 458 1,102 3,467 2,560 6,027 597 441 1,037
2022 4,293 3,005 7,298 799 559 1,358 3,962 2,923 6,885 733 540 1,273
2023 4,893 3,368 8,261 989 680 1,669 4,460 3,288 7,748 900 664 1,564
2024 5,511 3,728 9,239 1,219 825 2,043 4,961 3,654 8,615 1,100 810 1,910
2025 6,146 4,087 10,233 1,496 985 2,491 5464 4,022 9,486 1,332 981 2,313
2026 6,731 4,398 11,129 1,827 1,194 3,021 5,907 4,346 10,253 1,607 1,183 2,790
2027 7,086 4,550 11,636 2,218 1,424 3,642 6,142 4,519 10,661 1,925 1,416 3,342
2028 7,294 4,601 11,804 2,674 1,686 4,360 6,242 4,592 10,834 2,287 1,682 3,969
2029 7,444 4,611 12,056 3,198 1,981 5,179 6,290 4,626 10916 2,703 1,988 4,691
2030 7,880 4,318 12,198 3,939 2,159 6,098 6,328 4,653 10,981 2,164 2,327 5,490

8 The total columns may not reflect exact sums because of rounding.

conventional vehicles are assumed to have the same utilization and survival. As in the
Phase 1 analysis, 3X cars are assumed to achieve 81 mpg on the EPA test (3X light
trucks are assumed to achieve 63 mpg), and utilization is assumed to decline
exponentially with vehicle age. In both phases, in-use fuel economy is assumed to be
approximately 20% below EPA-test fuel economy for all vehicles.* The light-truck share
of LDV sales rises from 35% in EIA’s 1996 forecast to 42% in EIA’s 1997 forecast. As a

4 A correction factor of 0.814 was applied to correct for the observed discrepancy or gap between
fuel economy as measured on the EPA test cycle and actual or in-use fuel economy. Several
studies have confirmed the existence of such a gap and its relative magnitude (McNutt et al.
1978, Westbrook and Patterson 1989, Maples 1992, Mintz et al. 1993). The gap is believed to
be due to changes in actual travel conditions since the design of the test cycle and development
of averaging procedures, especially increases in the share of travel under urban conditions and
increased traffic congestion. Because it is unclear how the fuel economy of 3X vehicles will be
affected by these changes, the same correction factor was applied to all vehicle, fuel, and
technology types.
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Figure 2.5 3X Cars and Light Trucks as Shares of Total LDV Stocks by Scenario

result, overall fuel use by the 3X fleet drops by 7% in Phase 2 as compared with Phase 1
(tripling the fuel economy of less efficient vehicles saves more fuel).

Figure 2.6 shows the Phase 2 forecast of energy consumption by light-duty vehicles.
The figure shows the operational energy savings from introducing 3X vehicles, which is
dramatic for the high-market-share scenario and more modest, but still substantial, for
the low-market-share scenario. This reduction in energy use is due entirely to improved
fuel efficiency. If alternative fuels (such as methanol, ethanol, hydrogen, and DME) are
used in 3X vehicles to replace gasoline, additional reductions in petroleum consumption
may be expected. The total amount of petroleum reduction from fuel substitution is equal
to the amount of energy consumed by 3X vehicles operating on fuels other than gasoline
(including the non-gasoline component of blended fuels), plus reductions (if any) in the
amount of petroleum consumed in upstream processes.’ Thus, the effect of both
efficiency gain and fuel substitution varies by fuel.

2.5 Candidate 3X Vehicle Technologies

14

To achieve the goal of tripling fuel economy, the PNGV program has targeted three
general areas: converting and using fuel energy more efficiently by eliminating idling at
stops and during deceleration; reducing the tractive energy demand of the vehicle by

- reducing mass, drag, and/or tire rolling resistance; reducing accessory loads of the

vehicle; and recapturing some kinetic energy via regenerative braking. To convert and
use energy more efficiently in vehicles, two on-board power generation systems have

5 Note that data presented in Table 2.3 and Figure 2.6 pertain to energy use in vehicle operation
only. Fuel consumption for upstream fuel production activities is discussed in Section 4.
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Table 2.3 3X Vehicle Operational Energy Use by Market Share Scenario, Phases 1 and 2

(10° GGE)
Phase 1 Phase 2
High Market Share Low Market Share High Market Share Low Market Share
Light Light Light Light
Year Auto Truck Total® Auto Truck Total® Auto Truck Total? Auto Truck Total?
2007 2 2 4 2 2 5
2008 9 ] 17 9 9 18
2009 22 22 43 22 22 45
2010 43 44 87 44 44 88
2011 76 78 154 78 77 156
2012 128 130 258 131 129 260
2013 209 213 421 12 12 23 213 210 423 12 12 23
2014 335 342 677 37 38 75 340 335 675 37 37 74
2015 531 544 1,076 75 77 152 538 527 1,065 76 74 150
2016 818 834 1,652 122 124 246 822 804 1,626 122 119 241
2017 1,195 1,207 2,402 179 181 360 1,191 1,161 2,352 178 173 351

2018 1,659 1,659 3,319 249 249 499 1,638 1,596 3,235 246 239 486
2019 2,210 2,186 4,397 336 332 669 2,164 2,103 4,267 329 319 648

2020 2,846 2,783 5,629 443 433 876 2,762 2,680 5,441 429 416 846
2021 3,583 3,460 7,043 574 554 1,128 3,444 3,337 6,781 551 534 1,085
2022 4,417 4,212 8,629 736 700 1,435 4,205 4,070 8,275 699 676 1,375
2023 5,346 5,031 10,377 933 875 1,809 5,040 4,872 9,912 877 848 1,725

2024 6,365 5,011 12276 1,175 1,086 2,261 5841 5,738 11,679 1,082 1,055 2,147
2025 7,471 6,842 14314 1,469 1,337 2,806 6,903 6,660 13,563 1,351 1,303 2,653
2026 8,643 7,805 16,448 1,827 1,636 3,462 7,904 7,620 15,523 1,660 1,600 3,259
2027 9,816 8,742 18,559 2,257 1,989 4,246 8,886 8,561 17,447 2,027 1,952 3,979
2028 10,851 9,619 20,570 2,773 2,404 5,178 9,815 9,449 19,264 2,461 2,369 4,830
2029 12,029 10,420 22,449 3,387 2,887 6,274 10,674 10270 20,945 2,970 2,857 5,827
2030 13,118 11,048 24,166 4,145 3,398 7,542 11,461 11,022 22,483 3,560 3,424 6,984

& The total columns may not reflect exact sums because of rounding.

been selected by the PNGV program: direct-injection (DI) internal combustion engines
and fuel cells. DI engines can be compression ignition (so-called CIDI engines) and be
powered with such fuels as diesel, DME, biodiesel, and F-T diesel, all of which have
high cetane number. DI engines can also be spark ignition (so-called SIDI engines) and
be powered with such fuels as gasoline, methanol, ethanol, natural gas, and LPG, all of
which have high octane numbers. Relative to conventional CI engines (diesel engines),
CIDI engines can achieve a 30-40% improvement in fuel economy. Relative to conven-
tional SI engines (gasoline engines), SIDI engines can achieve a 20-30% improvement in
fuel economy. Fuel cells, which generate electricity from fuels through chemical
reactions, are anticipated to achieve twice the fuel economy of conventional SI engines.

SIDI and CIDI engines can be used alone (the engines are the only power source on
board the vehicle) or in hybrid configuration. Hybrid configuration achieves additional
improvement in fuel economy by eliminating idling and fuel flow during deceleration
and by operating engines in a more efficient regime of the engine map. In addition, a
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Figure 2.6 Impact of 3X Vehicles on Energy Use by LDVs, Phase 2 Results

hybrid configuration enables use of regenerative braking to recover some of the kinetic
energy built up during accelerations, which is otherwise lost. SIDI and CIDI engines in
hybrid configuration and fuel cells are presently regarded as reasonable candidates to
meet the 3X goal.

However, changes in on-board power units will not be enough. Additional
efficiency improvements will be needed to meet the 3X goal. These include reducing
vehicle mass (by replacing steel with such lightweight materials as aluminum,
magnesium, plastic, and composites); improving drivetrain efficiency, drag coefficients
and rolling resistance; and lowering accessory loads. This analysis implicitly assumes
that all technical means needed to achieve 3X fuel economy will be utilized. However, it
does not address the impacts of developing and deploying the non-fuel technologies.
With the exception of the infrastructure impacts of producing and using lightweight
materials (which are being analyzed by Oak Ridge National Laboratory), impacts of
other unnamed technologies are not addressed in the infrastructure analysis.

To summarize, this analysis includes SIDI engines, CIDI engines, and fuel cells, all
in hybrid configuration. Fuel cells are assumed to be proton-exchange membrane (PEM),
which is the most promising near-term fuel cell technology for motor vehicle

~ applications. Throughout the analysis, each of the technologies was assumed to meet the

3X goal. However, among the three, SIDI engines currently achieve the least fuel
economy improvement, CIDI engines the next, and fuel cells the most. This implies that
if all technologies meet the 3X goal, vehicles equipped with SIDI engines will require
the most additional effort (in improving drivetrain efficiency and/or reducing mass, drag,
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accessory loads, or rolling resistance) to reduce vehicle energy demand, vehicles with
CIDI engines will require moderate effort, and vehicles with fuel cells will require the
least effort. Investigation of the integrated design of each vehicle type to meet the 3X
goal is beyond the scope of this study.

2.6 Candidate 3X Fuels

In Phase 2 of this analysis, 11 different PNGV fuels were examined in the context
of three propulsion systems. These fuels were selected not only because their properties
make them technically feasible candidates, but also because of the broad range of
infrastructure impacts that they might produce, the quantification of which could provide
important input to the PNGV program for use in its selection of candidate 3X fuels. The
fuels are reformulated gasoline, reformulated diesel, dimethyl ether, methanol, ethanol,
compressed natural gas, liquefied natural gas, liquefied petroleum gas, biodiesel,
Fischer-Tropsch diesel, and hydrogen.

Reformulated gasoline (RFG). RFG is mandated in the nine most severe ozone
nonattainment areas of the United States. In California, a more stringent California-
specified RFG is required. In addition, many other states that are not required to use REG
under the 1990 Clean Air Act Amendments have opted into the federal program, in effect
mandating the use of RFG within their borders. Thus, a sizable portion of the U.S. light-
duty-vehicle fleet may be using RFG by the time 3X vehicles are introduced. Phase 1
RFG was introduced in 1995. Phase 2 RFG is required to replace the Phase 1 formulation
beginning in 2000. In this analysis, federal Phase 2 RFG was assumed to be used by all
conventional LDVs in the reference scenario and by conventional vehicles and 3X SIDI
and fuel-cell-powered vehicles in the high- and low-market-share scenarios. The use of
light hydrocarbons in fuel-cell-powered vehicles is a relatively recent proposal with its
share of technical hurdles. Research is currently under way to develop an efficient,
quick-responding reformer to produce hydrogen from light hydrocarbons on board a fuel-
cell vehicle using the partial oxidation process. In this study, RFG was assumed to be the
hydrocarbon of choice for on-board reforming because it could be readily accommodated
by the existing gasoline supply infrastructure.

Reformulated diesel (RFD). The diesel fuel examined in Phase 1 of this analysis
was a low-sulfur diesel introduced nationwide in 1993. In the past year, emission targets
for CIDI engines have been made more stringent, so stringent in fact that it is debatable
whether they can be met with today’s low-sulfur diesel fuel. More likely than not, a so-
called reformulated diesel (RFD) with low sulfur and aromatic content will be needed.
For this analysis, it was assumed that this new diesel fuel will have a sulfur content of
100 ppm by weight. At present, no information on potential aromatic content is available.

Dimethyl ether (DME). DME was included because several recent studies have
indicated that this fuel, although expensive and requiring changes in fuel storage and
injection systems, may offer significant environmental benefits while exploiting the high
thermal efficiency of a CIDI engine. DME’s high cetane number (55-60) and inherently
low PM emissions make it a particularly attractive replacement for diesel.
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Methanol (MeOH). Methanol was considered in pure form (M100) for both SIDI
engines and fuel-cell vehicles. Methanol has been promoted for LDV applications
because it has potentially low VOC and CO emissions while being produced from a non-
petroleum source (i.e., natural gas). Methanol fuel cells were assumed to be of the partial
oxidation type with on-board reformers.

Ethanol (EtOH). Ethanol was included because it alone, among the fuels
considered, is currently made from renewable resources. Ethanol was assumed to be
burned in SIDI engines in pure form (E100). Although ethanol in different blend
percentages with gasoline (such as 85% ethanol and 15% gasoline [E85] and 10%
ethanol and 90% gasoline [E10]) has been used or promoted for LDV applications, pure
ethanol better illustrates the fuel’s potential impact. Use of ethanol reduces both GHG
emissions and fossil fuel use.

Compressed natural gas (CNG) and liquefied natural gas (LNG). CNG and LNG
were assumed to be used in SIDI engines. Since they are made from natural gas, which is
relatively abundant in the United States and worldwide, CNG and LNG can reduce
petroleum use and criteria pollutant emissions.

Liquefied petroleum gas (LPG). LPG was assumed to be used in SIDI engines
primarily for its environmental benefits. LPG also offers some petroleum reduction,
since approximately 50-60% of the LPG fraction appropriate for motor fuel use
(i.e., propane) currently comes from natural gas (EIA 1997a; EIA 1997¢). LPG is
currently the most widely used alternative fuel in the United States. Consumers are
relatively familiar with LPG as a transportation fuel.

Biodiesel. Biodiesel was included because it is produced from renewable sources
and has a large potential for reducing transportation GHG emissions and petroleum use.
It was assumed to be used in CIDI engines. Because of its high production cost and the
desire to use the existing diesel distribution system, it is generally suggested that
biodiesel be blended with conventional diesel. Most researchers in the field anticipate
that a blend of 20% biodiesel and 80% conventional diesel (B20) will exploit the
benefits of biodiesel at a reasonable cost premium. This blend percentage (with RFD as
the diesel component) was selected for 3X vehicle applications.

Fischer-Tropsch diesel (F-T diesel). F-T diesel, produced from natural gas, was
included because of its zero sulfur content, low aromatic content, and high cetane
number. To better utilize F-T diesel’s inherent advantages, some suggest that F-T diesel
be blended with conventional diesel. In this analysis, a blend of 50% F-T diesel and 50%
RFD (F-T50) was assumed for CIDI applications.

Hydrogen (H;). Gaseous hydrogen was considered for use in fuel-cell vehicles,
along with methanol and gasoline.

6 Because of on-board reforming, methanol was assumed to be lower quality, which is more or less
comparable with the methanol burned by SIDI engines.
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The three vehicle technologies and 11 fuels produced a total of 13 vehicle/fuel
combinations, which were evaluated in this analysis. Table 2.4 shows the
13 combinations.

Table 2.4 Propulsion Table 2.5 lists the physical and chemical properties
Technologies and Fuels of the 11 different fuels. It should be noted that heating
Examined in the Phase 2 value or energy content (Btu/gal) is a particularly
Analysis important consideration. Though beyond the scope of
. this analysis, heating value will affect vehicle design
Propulsion and the mix of enabling technologies needed to achieve
Fuel Technology : )
3X fuel economy. Vehicles using fuels with heating
RFG SID! engines values lower than RFG will have to provide more
Fuel cells on-board fuel storage in order to achieve the PNGV
) target of a 380-mi driving range, unless some of the
cNG Siblengines difference is compensated by improved efficiencies.
LNG SIDI engines Since methanol’s heating value is approximately half
that of gasoline, methanol tanks will have to be about
LPG SID! engines twice as large as gasoline tanks. Similarly, ethanol tanks
will be about one-third larger than gasoline tanks. For
Methanol E:Fe: in'ines other fuels, on-board storage must accommodate both
¢ differences in heating value and in the conditions
Ethanol SIDI engines needed to maintain the fuel in a particular (generally
liquid) state. LPG tanks will be larger and heavier than
RFD CID! engines gasoline tanks in order to store the fuel at a pressure of
DME CID! endi about 100 psi; DME tanks will be similar. CNG will be
engines ) ) — .
stored in cylinders at about 3000 psi, while LNG will be
Biodiesel CIDI engines stored in cryogenic tanks. Gaseous hydrogen (liquid
hydrogen was excluded from this analysis) will be
F-Tdiesel  CIDI engines stored at approximately 6000 psi. Among the eleven
H fuels, CNG, LNG, and gaseous hydrogen will incur the
ydrogen Fuel cells

most severe weight penalties, which then must be
compensated by further mass reductions or efficiency
improvements. By contrast, RFD, biodiesel, and F-T diesel have higher energy content
than gasoline. On-board storage of these fuels will produce a small weight benefit.

2.7 Fuel Production Pathways

Fuel production pathways for each of the 11 different fuels must be specified in
order to estimate capital needs for establishing fuel production and distribution
infrastructure and to analyze fuel-cycle energy and emissions impacts. The fuel pathways
presented in Figure 2.7 are based on ANL’s previous research in this area.

As the figure shows, RFG and RFD are produced from petroleum. LPG is produced
from both petroleum and natural gas (NG). CNG, LNG, DME, methanol, and F-T diesel
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Table 2.5 Properties of 11 Potential 3X Fuels

LHV? HHV*  Density Cratio® S ratio®
Fuel (Btu/gal) (Btu/gal) (g/gal) (wt) (wt)
Reformulated gasoline (RFG) 113,000 122,000 2,749 0.830 0.000100
Reformulated diesel (RFD) 128,500 138,700 3,240 0.870 0.000100
Methanol (MeOH) 57,000 65,000 2,996 0.375 0.000007
Ethanol (EtOH) 76,000 84,500 2,996 0.522 0.000007
Liquefied petroleum gas (LPG)b 84,000 91,300 2,000 0.820 0.000000
Liquefied natural gas (LNG)" 72,900 80,900 1,589 0740  0.000000
Dimethy! ether (DME)b 68,200 73,600 2,528 0.522 0.000000
Methyl soyate (biodiesel) 117,100 128,500 3,346 0.780 0.000010
Fischer-Tropsch diesel 118,800 128,500 2,915 0.860 0.000010
Natural gas (per SCF) 928 1,031 205 0.738 0.000007
Hydrogen (Hz, per SCF) 274 324 2.4 0.000  0.000000

2 LHV=lower heating value; HHV = higher value; C ratio = carbon ratio; S ratic = sulfur ratio.
b Under pressure.
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Figure 2.7 Fuel Pathways Considered in this Study

are produced from natural gas. Prior to 2020, all hydrogen was assumed to be produced
from NG through steam reforming; beginning in 2020, new hydrogen capacity was
assumed to come from solar sources through water electrolysis. Between 2020 and 2030,
solar energy thus accounted for an increasing share of hydrogen production. Likewise,
ethanol production (initially corn-based) was assumed to shift to cellulosic ethanol plants
(using both woody and herbaceous biomass) beginning in 2016. Methy! ester (or soyate)
is the oil produced from soy oil through the transesterification process and has properties
similar to those of diesel fuel.
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Section 3
Capital Requirements
of PNGV Fuels Infrastructure

If 3X vehicles require unconventional fuels, a new infrastructure must be developed
to supply those fuels in the quantities demanded. That supply infrastructure can be
broken down by function: (1) fuel production, which includes the facilities and
equipment used to refine and/or process feedstocks into final products, and (2) fuel
distribution, which includes the transportation and storage of feedstocks and products at
each stage in the production process. Because of the unique characteristics of these two
functional areas, estimated capital requirements for PNGV fuels infrastructure have been
calculated separately for the two. The methodologies, assumptions, and results of these
calculations are discussed below.

3.1 Fuel Production Assumptions

Each fuel evaluated in this study was assumed to supply the energy needs of all 3X
vehicles — and only those vehicles — for each year of the analysis.” Energy
requirements were determined by IMPACTT model runs, which, in turn, were based on
vehicle sales and survival modeling and utilization assumptions. These parameters are
described in Section 4 of this report. The energy requirement (in gasoline gallon
equivalents or GGEs) was then converted into annual demand for each fuel by using the
ratio of that fuel’s heating value to that of RFG.8

An estimate of the physical and capital requirements for production of the requisite
volume of fuel was then calculated by determining the scale of production appropriate
for the volume demanded and postulating a reasonable timetable for construction of the
facilities needed. For each fuel, production was calculated on the basis of a 90% on-
stream factor. Production of fuels that also serve as industrial chemicals (e.g., DME) was
generally assumed to be incremental to current volumes because motor fuel use will not
substantially decrease demand for industrial use. Methanol is a key exception to this,
since some reduction in demand for MTBE (as a result of reduced gasoline demand by
the non-3X component of the vehicle fleet) can be expected to reduce non-3X demand
for methanol, but the impact should not be large given the slow increase in the fleet of
3X vehicles.

Note that sufficient volumes of fuel had to be supplied for each year of the analysis. Inventories
could not be used to balance supply and demand. Note also that the demand forecast did not
include the fuel requirements of alternative-fuel vehicles (AFVs) that do not achieve 3X fuel
economies. These non-3X AFVs were not considered in this analysis.

Higher heating values were used here to permit comparison with EIA forecasts of fuel demand.
In other parts of the analysis, lower heating values were used to account for differences in the
water content of combustion products.
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Note that for the capital cost analysis, costs were incremental to a base case of 3X
vehicles using RFG. Capital and operating costs for production facilities were developed
by using data from the literature, supplemented as needed by technical estimates. The
capital cost of production includes the capital cost for any necessary feedstock
development (e.g., LNG will require additional gas well development, as well as gas
processing and liquefaction equipment). In all cases, capital costs were calculated by
using a 10-yr payback and a 10% real interest rate. All costs are in 1995 dollars.

3.1.1 Methanol (M100)

Pathway. In this analysis, all methanol was assumed to be imported and to be made
from remote, inexpensive natural gas. Capital cost for development of the natural gas
feedstock was assumed to be twice as high as for domestic sources to account for the
lack of infrastructure in remote foreign fields. All production was assumed to be via
steam-reforming, in which a synthesis gas is produced and then catalytically reformed
into methanol. Such processing schemes are used in typical low- to intermediate-pressure
methanol synthesis, such as those provided by Lurgi; Imperial Chemical Industries, Ltd.
(ICI); and M.W. Kellogg. Steam reforming is an efficient, commercial process well-
suited to remote gas fields (Chemical Market Associates, Inc. 1996).

Equipment Requirements. Through 2014, new methanol plants were assumed to
have a capacity of 2,500 metric tons per day (MTPD) of methanol. This capacity is
consistent with that of current world-scale methanol plants. Starting in 2015, new plants
were assumed to have a capacity of 10,000 MTPD. This capacity is consistent with the
capacity assumptions used in a prior study by the DOE Policy Office and provides
significant economies of scale (U.S. DOE 1991).

Cost. Estimates of capital and operating costs for methanol production were derived
from various sources. Fixed and working capital costs were developed by using
information from DOE (1991) and Chemical Market Associates, Inc. (1996). Foreign
remote-gas feedstocks were assumed to be available for $0.80 per million Btu in 2007.
This price was assumed to increase (linearly) by 30% through 2015 and to stabilize
thereafter. The latter is consistent with assumptions elsewhere in this report regarding
EIA-projected domestic gas prices and world crude oil prices. Specifically, since the
1997 Annual Energy Outlook projected flat or declining energy prices from 2010 to
20135, extrapolated prices were assumed to be flat beyond 2015. Non-feedstock operating
costs were derived from Chemical Market Associates, Inc. (1996).

3.1.2 Ethanol (E100)

Pathway. Ethanol was assumed to be produced domestically and to be made
exclusively from corn through 2015. Over the 2016-2020 period, an increasing share of
newly constructed facilities was assumed to use cellulosic biomass in place of comn. This
transition applied only to new facilities and occurred at 20% per year (that is, in 2015,
100% of ethanol was produced from corn; in 2016, 80% of the ethanol produced in
newly constructed facilities was from com, etc.). By 2020, all new facilities were
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assumed to be based on cellulosic biomass, although older, corn-based plants continued
to produce fuel.

Equipment Requirements. New facilities were initially (2007 through 2010)
assumed to be of the dry-milling type, with a grind rate of 36,000 bushels of corn per day
(to produce 30.9 million gal of ethanol per year). Beginning in 2011, corn-based
facilities were assumed to be of the wet-mill type with a grind rate of 108,000 bushels
per day (output of 89.1 million gal of ethanol per year).

All cellulosic ethanol plants were assumed to consume 1,000 bone-dry tons (BDT)
of cellulosic biomass per day to produce 35.0 million gal of ethanol per year (for an
ethanol yield of about 100 gal/dry ton). These plants are approximately five times larger
than the capacity of cellulosic ethanol facilities considered in most other analyses. Larger
capacity plants are required by the relatively large fuel demand by 3X vehicles in the
period beyond 2015. If not for the higher capacity assumption, over 850 cellulosic
ethanol plants of the more typical size would be required by 2030 in the high-market-
share scenario.

Cost. Costs were developed from several sources. Capital costs of dry-milling plants
were obtained from Stanley Consultants (1996), Liegois (1997), and Donnelly (1997).
Capital costs of wet-milling plants were from Stanley Consultants (1996). Non-feedstock
operating costs for corn facilities were obtained from Stanley Consultants (1996). The
price of corn was assumed to be $2.75 per bushel in all years. Co-product prices were
from Morris and Ahmed (1992). Capital, operating, and feedstock costs for cellulosic
ethanol plants were obtained from Wiselogel (1996).

3.1.3 LPG

Pathway. Liquefied petroleum gas is produced as a by-product of natural-gas
processing and crude-oil refining. At present, a bit more than half of the propane
produced domestically® comes from natural-gas processing plants. Approximately 7% of
the current U.S. LPG supply is imported, much of it from Canada (EIA 1997a; EIA
1997¢). For this analysis, the imported fraction was assumed to rise to approximately
40% of LPG supply by 2015 on the basis of the findings of the 502(b) study of the
U.S. DOE (U.S. DOE 1996; see Section 3.2.3). Imported LPG was assumed to be
produced from natural gas.

Equipment Requirements. LPG is likely to be produced by expansion of petroleum
refining and gas processing facilities — the current source of LPG — rather than
manufactured in new plants. For this analysis, such expansions in the United States and
other LPG exporting countries were assumed to be sufficient to supply LPG for 3X
vehicles.

9 Propane is the fraction of LPG used for motor fuel.
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Cost. Capital cost estimates for LPG production facilities were derived from True
(1996).

3.1.4 DME

Pathway. DME was assumed to be imported and produced from inexpensive,
remote natural gas. The use of inexpensive gas and extremely large production facilities
is a key factor in the economic viability of DME production (Fleisch and Meurer 1995).

Equipment Requirements. At present, DME is produced from natural gas via a two-
step process in which methanol is produced first. In this analysis, DME was assumed to
be produced directly from syngas (e.g., via the Haldor Topsge/Amoco process). Since
DME is not currently used as an automotive fuel, there are no full-scale facilities using
this process. However, the scant available literature (Fleisch and Meurer 1995; Hansen
et al. 1995) indicates that production volumes on the order of 580 million gal per year
(42,000 B/D nameplate with an on-stream factor of 90%) would be necessary to make
the process economical. This volume is equivalent to 5,600 MTPD, which is about twice
the size of current world-scale methanol plants.

Cost. Capital costs for facilities to produce DME have been estimated only
approximately in the literature. The published estimate of $1 billion for plant capital was
used for this analysis (Fleisch and Meurer 1995).

Feedstock cost should be comparable with that for methanol and Fischer-Tropsch
distillate. The literature on DME indicates that inexpensive natural gas is essential for
economically supplying DME (Fleisch and Meurer 1995). In this analysis, the cost of
remote natural gas was assumed to be $0.80 per million Btu in 2007, to increase linearly
(by 30%) through 2015, and to stabilize beyond 2015.

3.1.5 LNG

Pathway. LNG was assumed to be made by cryogenically liquefying domestic
natural gas. Though the process is common and large quantities of LNG are produced in
this country and abroad (primarily for storage and transportation of gas), LNG is not
currently used in significant quantities as an automotive fuel.

For this analysis, capital costs (i.e., for new wells) for the incremental supply of
natural gas needed to satisfy 3X vehicle demand were estimated and attributed to
transportation use. (In actual practice, however, incremental development of natural gas
resources would likely be cross-subsidized by non-transportation users because of the
commodity nature of the fuel. This applies to the price of gas, but does not reflect the
full cost of the resource.)

Equipment Requirements. LNG was assumed to be produced from industrial-
quality gas in 75,000-gal/day (gpd) liquefiers.
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Cost. Cost estimates were developed from several sources. Capital costs of
liquefiers and on-site storage tanks were obtained from Acurex Environmental
Corporation (1994). Operating costs were obtained from Nepywoda (1997).

3.1.6 CNG

Pathway. Compressed natural gas was assumed to be produced from domestic
resources. This pathway will require the development of additional gas supplies.

Equipment Requirements. New wells and gas processing plants will be needed to
produce the incremental gas required to supply 3X vehicles.

Cost. The costs of additional wells, processing plants, and connections to major
pipelines were estimated. These costs include both non-productive and productive wells.
To develop these cost estimates, historical counts of domestic producing wells, new
wells drilled, dry and productive wells, and average drilling cost per well were obtained
from EIA (1996¢) and the American Petroleum Institute (API 1995).

3.1.7 Hydrogen

Pathway. Hydrogen was assumed to be produced domestically, in centralized
production facilities, throughout the analysis. From 2007 to 2020, all hydrogen was
assumed to be made by steam reforming of natural gas. Beginning in 2021, an increasing
share of new production was assumed to use solar-powered electrolysis of water. This
process was assumed to be phased in over five years, accounting for an additional 20%
of new capacity per year. As a result, 61% of all hydrogen was supplied by solar
electrolysis in 2030 under the high-market-share scenario.

Equipment Requirements. Steam reforming of natural gas is a commercial
technology. When solar electrolysis is introduced, photo-voltaic (PV) arrays and
electrolyzers are the major pieces of capital equipment to be considered. The output of a
typical solar hydrogen facility was assumed to be 100 million scf/day. Such a plant
would be modular, consisting of several separate electrolyzer units, each rated at
100 MW. Solar arrays sufficient to supply approximately S00 MW of electricity to the
electrolyzers have been assumed for each plant. Because of the intermittent nature of the
solar resource, PV array capacity for a given plant would depend on location.

Cost. Reformer capital and operating costs were adapted from Blok et al. (1996).
Costs for PV arrays and electrolyzers were obtained from Ogden and Delucchi (1993).

3.1.8 Biodiesel

Pathway. Biodiesel was assumed to be produced domestically from soybean oil in
this study. Cheaper, higher-oil-content feedstocks (e.g., rapeseed oil) are being
investigated in Europe; however, in the United States, the political climate is likely to
favor soybean oil.
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Soy diesel (methyl ester of soybean oil, or methyl soyate) was assumed to be mixed
with 80% reformulated diesel to make a 20% blend of soy diesel fuel (B20). A credit for
the by-product glycerine is important in estimating the cost of biodiesel (Flechtner and
Gushee 1993). For this analysis, the price of glycerine was assumed to decline to
$0.50/1b (about half of the 1997 price) after introduction of biodiesel, significantly
reducing the value of the glycerine credit. Because of the limited market for glycerine,
such a reduction in value over the course of the analysis is not unreasonable.

Egquipment Requirements. Individual plants were assumed to produce
approximately 3 million gal of methyl soyate per year (Gavett 1995). This amount is
considerably less than the output of corn ethanol plants.

Cost. Capital and operating cost estimates were obtained from Gavett (1995).
Feedstock is by far the largest cost component, representing approximately 75% of the
cost of methyl ester (Booz-Allen & Hamilton 1994). Thus, little reduction in the cost of
biodiesel is likely to come as a result of economies of scale or reductions in processing
costs.

3.1.9 Fischer-Tropsch Diesel

Pathway. A 50% blend of Fischer-Tropsch distillate and reformulated diesel
(F-T50) was assumed in this analysis. Blending of F-T diesel and petroleum diesel takes
advantage of the F-T diesel’s inherently low aromatics, low sulfur, and high cetane and
reduces the burden on petroleum diesel to achieve mandated reductions in aromatics and
sulfur. The reformulated diesel component of FT-50 was assumed to be derived from
crude oil. The Fischer-Tropsch component was assumed to be imported and derived from
remote natural gas.

Equipment Requirements. A F-T plant using the Shell Middle Distillate Synthesis
process (Choi et al. 1996; Kramer 1997) was modeled. Although the process makes
significant quantities of high-quality gasoline in addition to distillate, costs were
attributed entirely to the desired distillate product. F-T plants were assumed to be built
close to large, remote gas fields. As product demand increased, larger plants were
assumed to predominate. Thus, by 2030, all plants were assumed to be either 50,000 or
100,000 B/D.

Cost. Costs were developed for three different plant sizes. Costs for a 100,000-B/D
plant were from Singleton (1997) and Knott (1997). Costs for a 50,000-B/D plant were
from Frank (1997), Singleton (1997), and Choi et al. (1996). Costs for a 5,000-B/D plant
were from Singleton (1997) and Choi et al. (1996). Engineering cost estimates were
calculated using RS Means Cost Guide (R.S. Means Company, Inc. 1996) and McKetta
(1992).




3.1.10 Reformulated Gasoline and Reformulated Diesel

Capital costs of RFG and RFD were not estimated per se. Rather, both were
assumed to be conventional fuels for which investment expenditures were already
included within the reference case. Industry investment in refining was assumed to
remain in its historical range of $3-6 billion per year over the course of the analysis
(Energy Statistics Sourcebook 1995). Table 3.1 presents a breakdown of the
U.S. petroleum industry’s annual capital expenditures for the past 25 years.

Table 3.1 Domestic Capital Expenditures of the U.S. Petroleum
Industry ($ billion)

Exploration & Marketing & Total Capital
Year Refining Production Transportation Other Expenditures
1973 1.104 7.212 1.818 0.916 11.050
1974 2.446 10.889 2.479 2.088 17.902
1975 1.981 9.915 4.576 2.152 18.624
1976 1.819 12.266 4.576 3.162 21.823
1977 1.324 18.400 3.628 3.339 26.691
1978 1.551 19.978 3.248 4,413 29.190
1979 2.735 31.495 4.434 6.055 44,719
1980 3.159 42.185 7.499 7.827 60.670
1981 5.131 57.830 9.513 10.523 82.997
1982 4.710 56.919 9.242 9.378 80.249
1983 4.142 39.473 9.233 5.679 58.527
1984 2.914 36.909 8.267 5.562 53.652
1985 2.992 33.371 6.290 5.199 47.852
1986 2.073 17.904 3.758 4.615 28.350
1987 2.180 14171 4.409 4.428 25.188
1988 2.874 17.455 5.000 5.419 30.748
1989 3.167 15.481 4.531 6.226 29.405
1990 4.402 16.630 5.831 7.157 34.020
1991 6.741 17.462 6.603 5.922 36.728
1992 6.795 14.681 7.266 5.507 34.249
1993 5.367 13.909 7.191 5.051 31.518
1994 5.082 14.672 5.376 5.413 30.543
1995 4.803 15.775 5.442 6.361 32.481
1996 3.932 18.187 5.331 5.795 33.245
1997 3.907 20.096 5.901 5.899 35.803
Average 3.497 22.931 5.658 5.363 37.449

Sources: 1973-94: Energy Statistics Sourcebook, 1995, 1995-97: Oil and Gas Journal, 1997.




Because feedstock currently represents 70—75% of the price of gasoline and diesel,
per-gallon costs of RFG and RFD were estimated as a function of the projected price of
crude oil (EIA 1996a), with appropriate adjustments for future investment requirements.
Both RFG and RFD were assumed to have a sulfur level of 100 ppm in this analysis. For
gasoline, increased desulfurization was assumed to add $0.04/gal; for diesel, meeting this
sulfur specification was assumed to add $0.08/gal. The higher diesel desulfurization
premium reflects the higher cost (including more capital investment and higher operating
pressures) of distillate hydrotreating relative to naphtha hydrotreating.

3.2 Fuel Distribution Assumptions

28

A five-step process was used to estimate costs associated with establishing PNGV
fuels distribution infrastructure. First, the distribution system was characterized from
production plant to refueling station for each potential PNGV fuel. This characterization
and the known capabilities of the existing gasoline and diesel fuel distribution systems
were then used to determine the extent to which existing systems could be modified to
accommodate each new fuel. Third, based on estimated fuel demand by 3X vehicles (see
Section 2), the requisite number of distribution and storage facilities (such as ocean
tankers, storage tanks, trucks, and refueling stations, and pipeline miles) was estimated
for each fuel in each year. Fourth, unit costs were estimated for each type of distribution
equipment. Finally, annual capital requirements were calculated by assuming a 10-yr
payback period and a 10% interest rate (in real-dollar terms). For hydrogen and NG
pipelines, a sensitivity case, assuming a 50-yr payback period, was tested.

Tables 3.2-3.6 present the key assumptions used to estimate the size and capital
cost of developing distribution systems for each of the candidate 3X fuels. The five
tables are organized by stage in the fuel pathway. Assumptions regarding equipment
requirements and costs of moving imported liquid fuels from overseas production centers
to marine and inland terminals are presented in Table 3.2. Similar assumptions for
moving domestically produced liquid fuels from domestic production centers to bulk
terminals are presented in Table 3.3. Table 3.4 contains assumptions regarding
equipment requirements and costs of moving all these liquid fuels from domestic inland
and bulk terminals to service stations, while Table 3.5 contains comparable assumptions
for moving gaseous fuels from domestic production centers to service stations. Finally,
Table 3.6 presents the costs of adapting service stations to dispense the candidate fuels.

Several assumptions cut across all fuels. First, each service station that dispenses an
alternative fuel was assumed to have originally dispensed 150,000 gal gasoline/month.
Each such station was assumed to be converted to dispense 100,000 gal gasoline/month
and 50,000 gasoline-gallon equivalents (GGE) per month of the alternative fuel. Use of
this assumption facilitates comparisons among the fuels.

Second, with the exception of trucks, all equipment was assumed to have a useful
life longer than the period of analysis (i.e., 2007-2030 for the high-market-share scenario
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Table 3.2 Key Assumptions Relative to Transportation of Imported Fuels

Assumption Methanol DME LPG
Imported ? Yes Same Same
Percent imported 100 100  Varies over time:

see text

Ocean Tankers ? Yes Same Same
Capacity (million gallons) 204 Same Same
Round-trips/yr 8 Same Same
Conversion of existing tankers? No Same Same
New tanker cost ($, millions) 41.2 Same Same
Marine terminals ? Yes Same Same
No. of marine terminals available 116 Same Same
Tumover rate of storage tanks (number of times/yr) 18 Same Same
Cost of converting existing tank ($/bbt) 3 NA NA
New tank cost ($/bbl) 18 36 36
No. of truck racks/terminal 1 Same Same
Truck rack cost ($, millions) 14 Same Same
Truck movement from marine terminals ? Yes Same Same
Trucks move first MMBD GGE to service stations? Yes Same Same
Truck capacity (thousand bbls/yr) 240 Same Same
Cost of converting existing truck {$000) 0 NA NA
New truck cost ($000) 151 Same Same
Pipeline movement from marine terminals ? Yes Same Same
Pipelines move all imported fuel above 1 MMBD Yes Same Same
GGE to inland terminals?
Throughput volume (million bbis/yr) 80 Same Same
Cost of converting existing pipeline ($000/mi) 40 NA NA
New pipeline cost ($000/mi) 396 530 530
Average pipeline distance (mi) 547 Same Same
Storage at inland terminals ? See Table 3.4 Same Same

Same = Used where values/answers for all fuels are the same. NA = Not applicable.

and 2012-2030 for the low-market-share scenario). Trucks, the key exception, were
assumed to be replaced every 15 years.10

Third, all costs are in 1995 dollars. Costs were converted to 1995 dollars by using
either the consumer or producer price index (as appropriate).

10 Some of the equipment converted to handle the new fuel may be of an age where routine
replacement or upgrade would be expected during the period of the analysis. Thus, one might
argue that expenditures programmed for replacement or upgrade of gasoline distribution
equipment would not be needed if alternative fuels were supplied instead of gasoline. The
avoided cost of expanding the gasoline distribution system (to meet the larger demand forecast
under a reference scenario without 3X vehicles) could be a legitimate offsetting cost. However,
avoided costs were not considered in this analysis.
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Table 3.3 Key Assumptions Relative to Transportation of Domestically Produced
Liguid Fuels

Methyl
Assumption Ethanol  Soyate LNG LPG
Movement from domestic production centers Yes Same Same Same
to bulk terminals ?
Percent by pipeline, barge, rail, truck 48/12/40/0  63/8/29/0  Initially all by 60/6/34/0
truck; later rail &
truck; see text

Movement by pipeline ? Yes Yes No Yes
Minimum fuel volume required before Yes No NA Yes
movement by pipeline begins?

Minimum volume required (million bbls/yr) 80 NA NA 80

Alternative mode until minimum met Truck NA NA Truck
Throughput volume (million bbls/yr) 80 NE NA 80
Cost of converting existing pipelines ($000/mi}) 0 0 NA NA
New pipeline cost ($000/mi) 396 NA NA 530
Average pipeline distance (mi) 564 NE NA 604
Movement by barge ? Yes Yes No Yes
New tugboats required? No No NA No
Barge capacity (thousand bbls/yr) 1260 NE NA 1130
Cost of converting existing barges 0 0 NA NA
New barge cost ($000) 1260 NA NA 1260
Movement by rail ? Yes Same Same Same
New locomotives or track required? No Same Same Same
Existing excess fuel-specific rail car capacity ? No No No Yes: see text
Rail car capacity (thousand bbls/yr) 109 129 194 420
New rail car cost ($000) 70 70 324 79
Movement by truck ? Yes No Yes Yes
Truck capacity (thousand bbls/yr) 240 NA 240 240
Cost of converting existing truck ($000) (o] NA NA NA
New truck cost (3000) 151 NA 372 151
Storage at bulk terminals ? See Table 3.4 Same Same Same

Same = Used where values/answers for all fuels are the same. NA = Not applicable. NE = Not estimated
because not necessary.

Finally, all costs are incremental to a baseline or business-as-usual level.
Specifically, while the capital costs of providing new equipment or converting existing
equipment are included, the costs of constructing the original gasoline distribution
system are not.

3.2.1 Methanol (M100)

Pathway. Methanol is a liquid at normal temperatures and pressures and thus can be
moved through the existing gasoline-distribution system, although some modifications
will be required. As stated in Section 3.1, methanol was assumed to be made in foreign,
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Table 3.4 Key Assumptions Relative to Storage of Liquid Fuels at Inland and Bulk
Terminals and Subsequent Distribution to Service Stations

. Methyl
Assumption Methanol DME LPG Ethanol Soya¥e LNG
Storage at inland and bulk terminals ? Yes Same Same Same Same Same
Capacity per terminal (thousand bbis) 300 Same Same Same Same Same
Turnover rate of storage tanks (number 18 18 18 18 18 24
of times/yr)
Cost of converting existing tank {$/bbl) 3 NA NA 3 3 NA
New tank cost ($/bbl) 18 36 36 18 NA 102
No. of truck racks/terminal 1 1 1 1 NA 1
Truck rack cost ($, millions) 14 14 14 14 NA 1.4
Truck movement to service stations ? Yes Yes Yes Yes Oglzoas Yes
Truck capacity (thousand bbls/yr) 240 240 240 240 NE 240
Cost of converting existing truck ($000) o] NA NA 0 NE NA
New truck cost ($000) 151 151 151 151 NE 372
Service stations ? See Table 3.6 Same Same Same Same Same

Same = Used where values/answers for all fuels are the same. NA = Not applicable. NE = Not estimated
because not necessary.

Table 3.5 Key Assumptions Relative to Transportation of Domestically
Produced Gaseous Fuels

Assumption CNG H,
Movement to service stations by pipelines ? Yes Same
Percent moved by pipeline 100 Same
Can existing natural gas pipeline capacity be used? Only a limited amount:  No

see text

New pipeline capacity required (thousand miles/TCF) 76 Same
New pipeline cast {$/mile, thousands, average for all types}) 615 1000
Service stations ? See Table 3.6 Same

Same = Used where values/answers for all fuels are the same.
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Table 3.6 Capital Cost of

Adapting Service Stations

to Dispense 50,000 GGE
of Alternative Fuel per

Month (1995$)
Cost/Station
Fuel ($10%)
Methanol 182
Ethanol 170
DME 261
LPG 204
CNG 928
Hydrogen 1,423
LNG 600
Biodiesel 0

remote areas where inexpensive NG will be available.
Methanol would then be transported by ocean tanker
to marine terminals in major U.S. ports. Because of
unresolved technical problems (e.g., the potential for
water pickup by methanol, cross-contamination of
products, and materials compatibility), the initially
small volumes of methanol shipped from marine
terminals to service stations were assumed to be by
truck rather than pipeline. Technical problems were
assumed to be resolved by the time methanol displaces
1 MMBD of gasoline. At that scale, movement by
pipeline from ports to inland bulk terminals should be
economical.ll At both low and high distribution
volumes, the final leg in the distribution network,
delivery from bulk terminals to service stations, would
be by truck. (Some fuel would also be distributed from
terminals to smaller bulk plants instead of going

directly by truck to service stations. This possibility was not characterized.)

Figure 3.1 shows the methanol distribution system. Tables 3.2, 3.4, and 3.6
presented key assumptions used to characterize that system. Additional assumptions used
to estimate equipment requirements and costs of methanol distribution are described

below.

MeOH
Import

Ocean
Tankers

Marine
Terminals

Stations
o Inland
Pipelines Terminals

Figure 3.1 Methanol Distribution System

Equipment Requirements. Some gasoline distribution equipment was assumed to
be converted to move methanol: trucks, storage tanks at marine and inland terminals,
and, eventually, pipelines. This equipment can be converted because use of methanol
will reduce gasoline distribution requirements. However, because twice as much (in

11 Although this threshold may seem high, a prior analysis estimated that 75% of total U.S. travel
is within 100 mi of existing marine terminals and can easily be served by truck distribution

(U.S. DOE 1990).
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physical volume) methanol is required to provide the same energy as gasoline, some new
trucks, storage tanks, and pipelines would also be needed.

It was assumed that all ocean tankers used to transport imported methanol would be
new (i.e., existing crude carriers would not be modified to ship methanol). This
assumption is based on a prior DOE analysis (U.S. DOE 1989) that questioned whether
existing tankers could be adequately cleaned, the amount of internal equipment that
would need to be replaced, and the age of the tankers available for conversion.

For this analysis, it was assumed that new truck racks would be required at each
marine terminal because of the significantly increased methanol fuel volumes that must
be handled and to avoid cross-contamination of products. A prior analysis (U.S. DOE
1990) estimated that 116 existing marine terminals could be used for methanol imports.
While somewhat dated, this estimate is still reasonable. Similarly, it was assumed that
new truck racks would be needed at each inland terminal. An average capacity of
300,000 bbls (EEA 1990) was used to calculate the required number of inland terminals
(and thus truck racks) for this analysis.

Existing gasoline service stations were assumed to be adapted to dispense
approximately 100,000 gal/month methanol (50,000 GGE) and 100,000 gal/month
gasoline. A prior analysis evaluated the service station equipment changes needed to
dispense 50,000 GGE of M85/month at a total capacity of 150,000 GGE/month per
service station. Equipment changes included, for example, additional refueling positions,
new and modified hose dispensers, and new and displaced underground tanks
(EEA 1995). Equipment changes estimated for this analysis of M100 fuel were adapted
from that earlier analysis.

Cost. Capital cost estimates for the methanol distribution system were derived from
several sources. Costs for new ocean tankers, averaging 60,000 dead-weight tons (DWT),
were obtained from U.S. DOE (1989) and Zebron (1997). Costs for new and converted
tanks at marine and inland bulk terminals were obtained from U.S. DOE (1990), as were
costs for new truck racks. Costs for new trucks were from EA Energy Technologies
Group (1991). On the basis of this latter study, it was assumed that there are virtually no
costs associated with converting existing gasoline trucks to distribute methanol. Costs for
new pipelines were from EA Energy Technologies Group (1991), while costs for
converting an existing pipeline were assumed to be one-tenth the cost of constructing a
new pipeline. Costs for conversion of service stations to dispense 50,000 GGE methanol
were from EEA (1995).

3.2.2 Ethanol (E100)

Pathway. Like methanol, ethanol is liquid at normal temperatures and pressures and
can be moved through the existing gasoline-distribution system, although some minor
modifications may be required. Compared with methanol, ethanol’s higher heat content
provides an important advantage — approximately one-third less product must be moved
to provide the same energy. As stated in Section 3.1, ethanol was assumed to be
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produced domestically. Movement from production centers to bulk terminals was
assumed to be primarily by pipeline and rail. This assumption is consistent with a
previous analysis (EA Energy Technologies Group 1991) that estimated that nearly 50%
of ethanol distribution could be by pipeline and 40% by rail. In this analysis, trucks were
assumed to play a somewhat larger role in ethanol distribution — for bulk movement
until volumes reach the levels required to support movement by pipeline, as well as for
delivery!2 from bulk terminals to service stations.

Figure 3.2 illustrates the ethanol distribution system. Tables 3.3, 3.4, and 3.6
presented key assumptions used in characterizing that system. The assumptions
underlying the equipment requirements and costs of ethanol distribution are described
below.
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Figure 3.2 Ethanol Distribution System

Equipment Requirements. As with methanol, some gasoline distribution equipment
—- including pipelines, barges, trucks and storage tanks at bulk terminals — can be
converted to move ethanol. This equipment can be converted because ethanol will reduce
gasoline distribution requirements. However, because one gallon of ethanol contains
about one-third less energy than a gallon of gasoline, 1.5 gal of ethanol is required to
replace one gallon of gasoline. So, in addition to the converted equipment, new pipelines,
barges, trucks, and storage tanks are also required.

All rail cars were assumed to be new (gasoline is not currently moved by rail;
therefore, there are no gasoline rail cars to convert). No new locomotives or track should
be needed, but new truck racks were assumed to be required at each bulk terminal. The
number of bulk terminals was calculated by assuming an average capacity of
300,000 bbls per terminal (like methanol’s inland terminals).

EEA has evaluated the equipment changes needed to permit gasoline service
stations to dispense approximately 75,000 gal/month ethanol (50,000 GGE E85) and

12 Some fuel may be distributed from terminals to smaller bulk plants instead of going directly by
truck to service stations. This part of the pathway was not characterized in this analysis.
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100,000 gal/month gasoline. Changes included, for example, additional refueling
positions, new and modified hose dispensers, and new and displaced underground tanks
(Energy and Environmental Analysis 1995). For this study, EEA’s analysis was adapted
to estimate the equipment changes required for E100.

Cost. Capital cost estimates were derived from several sources. Costs for new
pipelines were obtained from EA Energy Technologies Group (1991). Unlike methanol,
the cost for converting an existing pipeline was assumed to be zero (likewise for
converting an existing barge or truck). Costs for new rail cars and barges were obtained
from EA Energy Technologies Group (1991) and Zebron (1997), respectively. Costs for
new trucks were from EA Energy Technologies Group (1991). Costs for new and
converted tanks and truck racks at bulk terminals were obtained from U.S. DOE (1990).
Conversion costs for service stations to dispense 50,000 GGE of ethanol per month were
from Energy and Environmental Analysis (1995).

3.2.3 LPG

Pathway. LPG is a gas at normal temperatures and pressures, but it can be stored in
liquid form under modest pressure. Although it is possible that some displaced gasoline
infrastructure capacity might be converted to LPG use (e.g., pipelines, since gasoline
pipelines operate under pressure), prior analyses (e.g., EA Energy Technologies Group
1992) generally have assumed that gasoline facilities will not be converted to LPG. The
current LPG distribution system has excess off-peak capacity because of fluctuations in
seasonal demand. However, this “‘excess capacity” is needed to handle peak LPG
demand; thus (except where noted below), it was not assumed to be available to move or
store LPG for 3X vehicles.

A mix of both imported and domestic LPG was assumed to supply the fuel needs of
3X vehicles. Except for Canadian imports, imported LPG was assumed to be shipped by
ocean tanker. EIA’s AEO 1997 (EIA 1996a) estimated that in 1996 approximately 3% of
all U.S. LPG was from non-Canadian imports. By 2015, EIA forecasts that percentage to
triple, to about 9% (under the EIA reference case, that is, no LPG demand by 3X
vehicles). In this analysis, EIA’s imported and domestic shares were used through 2015.
Beyond 2015, imported market shares must include a growing component of
transportation sector fuel use. For this analysis, that component was supplied by results
of a recent DOE study on the market potential of alternative fuel use by motor vehicles
(DOE 1996). In one case of that study, non-Canadian imports accounted for about 40%
of the transportation sector’s use of LPG (1.7 MMBD LPG) in 2015. Thus, in this
analysis, the shares of non-Canadian imports were interpolated between 9% (for volumes
of transportation sector LPG use of 159,000 bbl/d, EIA’s 2015 estimate) and 40% (for
1.7 MMBD transportation sector LPG use).

As in the methanol analysis, trucks were assumed to move imported LPG from
marine terminals to service stations until LPG displaces 1 MMBD of gasoline. At that
point, pipelines were assumed to enter the LPG distribution network, moving the fuel to
inland terminals from which trucks would deliver it to service stations. In reality,
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however, even under the high-market-share scenario, the volume of imported LPG never
reaches 1 MMBD. Thus, no pipeline movement was assumed for imported LPG.

For domestically produced LPG, 60% was assumed to be moved from production
centers to bulk terminals by pipeline, 34% by rail, and the rest by barge. These shares
were based on a prior analysis of LPG movement (EA Energy Technologies Group
1992). Trucks were assumed to move LPG until volumes are sufficient to support the
construction of one pipeline from domestic production centers. Trucks were also
assumed to be used to complete the delivery of LPG from bulk terminals to service
stations. As with other fuels, some fuel may also be distributed from terminals to smaller
bulk plants instead of going directly by truck to service stations. This part of the pathway
was not included in this analysis.

Figure 3.3 illustrates the LPG distribution system. Tables 3.2-3.4 and 3.6 presented
key assumptions used to characterize that system. The assumptions underlying the
equipment requirements and costs of LPG distribution are described below.
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Figure 3.3 LPG Distribution System

Eguipment Requirements. With the exception of rail tank cars, the LPG fuel
distribution system (from ocean tankers to trucks) was assumed to be entirely new. A
prior analysis by EA Engineering (EA Energy Technologies Group 1992) found that the
current population of LPG rail tank cars is very large, with sufficient excess capacity to
move over 80 million bbl/yr. This excess capacity is well above the volumes of LPG
projected to be moved by rail in the low-market-share scenario and until the latter years
in the high-market-share scenario. Thus, new rail cars are only required in the outyears of
the high-market-share scenario.
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Again, service stations were assumed to be converted so that the equivalent of
50,000 GGE of LPG per month could be dispensed. All LPG-specific equipment at
service stations was assumed to be new.

Cost. The capital cost estimates for LPG were derived from several sources. The
costs of LPG ocean tankers were approximated from the costs of methanol tankers. LPG
tankers are likely to be somewhat more expensive (because LPG is stored under
pressure), but no information on the cost difference is available. Costs for new and
converted tanks at marine, inland and bulk terminals, for new pipelines, and for new rail
cars were obtained from EA Energy Technologies Group (1992). Costs for new truck
racks and new trucks were from U.S. DOE (1990) and EA Energy Technologies Group
(1991), respectively. Costs for new barges were from Zebron (1997). Finally, costs for
conversion of service stations to dispense 50,000 GGE of LPG were from EEA (1995).

3.2.4 DME

Pathway. The DME fuel distribution system was assumed to be very similar to that
for imported methanol and LPG. Like methanol and LPG, DME was assumed to be
shipped on ocean tankers to marine terminals and then transported by truck to service
stations until it displaces 1 MMBD gasoline. Beyond this level, DME was assumed to be
moved by pipeline to inland terminals and then by truck to service stations. Figure 3.4
illustrates the DME distribution system. Tables 3.2, 3.4, and 3.6 presented key
assumptions for the DME pathway. The assumptions underlying the equipment
requirements and costs of DME distribution are described below.

DME Ocean Marine Trucks Service

Import Tankers Terminals Stations
L Inland

Pipelines Terminals

Figure 3.4 DME Distribution System

Equipment Requirements. The physical properties of DME are similar to those of
LPG. Like LPG, DME can be stored in liquid form under modest pressure. Because little
information exists on DME handling and distribution, DME equipment requirements
were approximated on the basis of LPG equipment requirements.
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As with LPG, some displaced gasoline infrastructure capacity could be converted to
distributing DME. However, as in the LPG analysis, it was assumed that conversion of
gasoline infrastructure would not occur. Although DME could make use of converted
LPG facilities, this analysis assumed that DME would replace gasoline, not LPG. Thus,
all DME fuel distribution requirements (tankers, trucks, pipelines, etc.) were assumed to
be new.

Again, gasoline service stations were assumed to be converted to dispense
50,000 GGE of DME per month. All DME-specific equipment at service stations was
assumed to be new.

Costs. Except for the cost of converting service stations, capital costs for DME
distribution equipment were assumed to equal those for LPG. Because the heating value
of DME is approximately 81% that of LPG, nearly 25% more DME must be supplied to
equal the energy in 1 gal of LPG (which is roughly equivalent to the energy in 0.75 gal of
gasoline). Therefore, the pumps, tanks, and other equipment at service stations
dispensing 50,000 GGE DME will require 25% additional capacity, as compared with an
energy-equivalent volume of LPG. Thus, EEA’s estimate of LPG station conversion cost
(EEA 1995) was adapted to develop an estimate for DME station conversions.

3.2.5 LNG

Pathway. LNG was assumed to be produced domestically at centralized production
facilities. Because of the need for cryogenic storage, distribution was assumed to be via a
separate distribution system (i.e., neither the existing gasoline nor natural gas
distribution systems would be used), not unlike the situation today. In the United States,
small volumes of L.NG are currently moved by truck, and rail shipment to bulk terminals
may soon begin. For this analysis, it was assumed that LNG would continue to be moved
by these modes from central production facilities to bulk terminals and then to service
stations by truck. Because of the lack of prior analyses of the potential mode split of
LNG movements, it was assumed that the initial 0.5 MMBD of LNG would be moved
solely by truck. When LNG demand exceeds that level, it was assumed that two-thirds of

- the incremental movement would be by truck and one-third by rail. By using these

assumptions, approximately one-fourth of total LNG demand was assumed to be moved
by rail in 2030 under the high-market-share scenario.

Figure 3.5 shows the LNG distribution system. Tables 3.3, 3.4, and 3.6 presented
key assumptions used to characterize that system. The assumptions underlying the
equipment requirements and costs of LNG distribution are described below.

Equipment Requirements. As indicated above, all facilities and equipment required
to move LNG were assumed to be new (trucks, rail cars, storage tanks, etc.). Again,
service station conversions were assumed to dispense 50,000 GGE of LNG and
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Figure 3.5 LNG Distribution System

100,000 gal of gasoline per month. All LNG-specific equipment at service stations was
assumed to be new.

Cost. Capital cost estimates for LNG were derived from several sources. Costs for
new trucks and new rail cars were obtained from Acurex (1992 and 1994). Costs for new
truck racks were from U.S. DOE (1990). Costs for conversion of service stations to
dispense 50,000 GGE of LNG were adapted from estimates developed by Acurex
Environmental Corporation for other LNG volumes (1992).

3.2.6 CNG

Pathway. All natural gas was assumed to be produced domestically and moved by
pipeline to service stations. The existing natural gas distribution system was assumed to
be used, with capacity added to meet demand increases over time. Figure 3.6 illustrates
the CNG distribution system. Tables 3.5 and 3.6 presented key assumptions for the CNG
pathway. The assumptions underlying the equipment requirements and costs of CNG
distribution are described below.
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Production Stations

Figure 3.6 Natural-Gas Distribution System

Eguipment Requirements. It was assumed that new pipeline capacity would be
required once motor-vehicle demand exceeded 0.31 trillion cubic feet (TCF). This
threshold was based on EIA’s AEO 1997, which forecast 0.31 TCF motor-vehicle use of
CNG in 2015 out of total U.S. NG demand of 30 TCF. Because EIA projected capacity
additions to the NG pipeline system to meet these demand levels, vehicular demand for
CNG above those levels (e.g., all CNG demand by 3X vehicles reaches 2.7 TCF in the
high-market-share scenario) was assumed to require even more capacity additions.
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In the late 1980s, there were 250,000 mi of transmission lines, 900,000 mi of main
distribution lines, and 520,000 mi of service lines capable of moving 22 TCF
(EA Mueller 1991; R.F. Webb Corporation 1992). Assuming a linear relationship
between pipeline mileage and the volume of NG delivered, new capacity should be
required at the rate of 76,000 mi/TCF (1.67 million mi/22 TCF). Although a linear
relationship may be overly simplistic, a detailed micro-level analysis would be required
to develop a more accurate assessment of the length and size of pipelines required to
support the additional natural gas movement. Such analysis is beyond the scope of this
effort.

Pipeline expansion typically requires additional storage facilities, which may or may
not be included in pipeline cost estimates. Some of the costs cited below for the NG
distribution system clearly include expanded storage facilities; for others, it is not clear
whether such costs are included. This analysis assumed that pipeline costs included
additional storage and thus did not specifically account for expanding storage capacity.

Again, gasoline service stations were assumed to be converted to dispense
50,000 GGE of CNG per month. All CNG-specific equipment at service stations was
assumed to be new.

Cost. Capital cost estimates for CNG were derived from several sources. NG
pipeline costs vary by size of pipeline, distance, and location. For this analysis, it was
assumed that transmission lines would be 32 in. in diameter, distribution lines would be
12 in., and service lines would be 2 in. (Williams 1996). Distance and location were
assumed to be comparable to historical patterns. Thus, transmission lines were assumed
to cost $900,000/mi, main distribution lines were assumed to cost $780,000/mi, and
service pipelines were assumed to cost $190,000/mi (EA Mueller 1991; Williams 1996).
Using the historical share of mileage by the three pipeline types, a weighted-average cost
of new NG pipeline was calculated at $615,000/mi.

The cost of converting a gasoline service station to dispense 50,000 GGE of CNG
was obtained from EEA (1995).

3.2.7 Hydrogen

Pathway. All hydrogen required by 3X vehicles was assumed to be produced in the
United States from natural gas and solar electrolysis of water and to be moved in gaseous
form (by pipeline) from central production facilities to service stations. An all-new
distribution system was assumed; no existing facilities (e.g., no NG distribution
facilities) would be converted. Figure 3.7 characterizes the Hy distribution system.
Tables 3.5 and 3.6 presented key assumptions for the pathway. The assumptions
underlying the equipment requirements and costs of H distribution are described below.
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Figure 3.7 Hydrogen Distribution System

Equipment Requirements. As indicated above, the entire pipeline distribution
system was assumed to be new. Pipeline miles were assumed to equal the number
estimated for the CNG pipeline system, but at increased compression. Hy pipelines of the
same length and size can carry the same amount of energy as NG pipelines, but the
required compressor capacity is much greater (3.0-3.5 times as great) because a cubic
foot of Hy contains far less energy than a cubic foot of NG at normal temperature and
pressure. Hj storage requirements were assumed to be much less than those for NG
because seasonal demand for hydrogen for transportation use should vary far less than
the seasonal demand for NG.

Again, gasoline service stations were assumed to be converted to dispense
50,000 GGE of Hj per month. All Hj-specific equipment at service stations was assumed
to be new.

Cost. Capital cost estimates for Hp were derived from several sources. The cost of
Hj pipelines (including compressors) was based on work by Williams (1996) and Ogden
et al. (1997). According to Williams (1996), H; pipelines will be similar to NG pipelines
but will cost more, simply because higher pressures are required for Hj transmission.
Williams (1996) indicates that the cost per unit of pipeline will be 50% more and larger
compressors will be needed. In this analysis, a cost of $1 million/mi was assumed for Hp
pipelines (Ogden et al. 1997). This cost is consistent with Williams’ 50% cost increment
vis a vis NG pipelines (using this study’s separately derived cost estimate for NG
pipeline).

The cost of converting a service station to dispense 50,000 GGE of H, was based on
Williams (1996) and Berry et al. (1995). Neither reference specifically estimated the
conversion cost for dispensing 50,000 GGE of Hj; thus, cost was interpolated from other
Hj dispensing volumes, assuming proportionality to volume throughput. The resulting
conversion cost of $1.423 million/station assumed compression of Hj to above 6000 psi
for on-board vehicle storage.

3.2.8 Biodiesel

Pathway. Methyl soyate, produced from the transesterification of soy oil, was
assumed to be produced in the United States, specifically in PADD II (the Midwest), and
moved from production plants to bulk terminals by pipeline (63%), barge (8%), and rail
(29%). Blending with conventional diesel oil, to an 80% diesel and 20% methyl soyate
blend (or B20), was assumed to occur at bulk terminals, from which the fuel was
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assumed to be transported like conventional diesel (Figure 3.8). Mode splits were based
on previous analysis of the movement of ethanol from the Midwest (PADD II) to the rest
of the United States (EA Energy Technologies Group 1991).

N )
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Methyl .
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Soyate i
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W

Figure 3.8 Biodiesel Distribution System

e Trucks
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Equipment Requirements. For biodiesel, only the movement and storage of methyl
soyate was assumed to require new equipment. Once methyl soyate is blended with
diesel, the movement of biodiesel was assumed to use the same facilities as gasoline and
diesel fuel. Because biodiesel has a higher energy content than the gasoline displaced in
the PNGYV analysis, no additional distribution capacity (including at service stations)
should be required. Likewise, no significant changes in service station equipment should
be required.

It was assumed that no additional pipeline or barge capacity would be required to
move methyl soyate because there should be less of it moved than the gasoline displaced
(methyl soyate has higher energy content than gasoline), and it comprises only 20% (by
volume) of the biodiesel blend. Movement by rail was assumed to require new rail cars
because gasoline is not currently moved by rail (diesel is moved by rail, but methyl
soyate displaces gasoline, not diesel). At bulk terminals, no new storage capacity or truck
tracks should be needed because idled gasoline facilities and equipment could be retrofit
to store methyl soyate (prior to blending with diesel). Note that cross-contamination of
products is less of a concern with biodiesel than with other fuels.

Cost. Distribution of methyl soyate incurs two principal costs: for new rail cars and
for retrofitting storage tanks at bulk terminals. This analysis used the same costs for
methyl soyate as were estimated for ethanol by the EA Energy Technologies Group
(1991).

3.2.9 Reformulated Diesel and Fischer-Tropsch Diesel

The pathways, equipment requirements, and costs to distribute these fuels were
assumed to be essentially the same as those for conventional gasoline and diesel fuel.
Thus, no incremental capital requirements were assumed. Similarly, no incremental
capital requirements were assumed for distributing RFG for 3X vehicles.




H

3.3 Assumptions and Methodologies Used to Calculate Unit Costs

Estimated unit or per-gallon costs for each fuel are presented in Section 3.4.3. This
section presents the methodologies and assumptions used to derive those estimates. Per-
gallon costs include capital costs (as estimated in this study), operating costs (including
feedstock), and taxes. Capital costs reflect the incremental costs incurred to
accommodate fuel demand by 3X vehicles. Converted to a per-gallon basis, these costs
were computed as annual capital costs divided by annual fuel production. Operating cost
estimates were derived from various sources, as explained below. Operating costs were
already on a per-gallon basis. All costs for each fuel were converted to a gasoline-
equivalent gallon for comparison purposes.

As one might expect, the way per-gallon costs were calculated in this study may not
be the same as the way in which the fuels industry determines a fuel’s price. Pricing of
fuels is a sophisticated process affected by capital costs, investors’ expectations for a
return on their capital investments, expected short- and long-term: profits, marketing
strategies, fuel taxes, and so on. The cost estimation process used in this study was not
intended by any means to predict potential prices of candidate 3X fuels. Instead, the
intent was to put capital cost estimates for the different fuels into a common unit (a
gasoline-gallon equivalent, or GGE) so readers can compare them with other estimates as
well as with current prices. This comparison should put the individual estimates into
perspective, both relative to one another and to the costs consumers already bear for
existing fuels.

3.3.1 Fuel Production Costs

Fuel production costs (in $/GGE) were calculated as the sum of per-gallon capital
costs (annual capital cost divided by annual fuel production), feedstock operating costs,
and non-feedstock operating costs. For biodiesel and corn-based ethanol, co-products
account for a significant cost element. In these cases, the value of co-products was taken
as a cost credit and deducted from the per-gallon cost of the fuel.

For the commodity fuels — gasoline, diesel, and CNG — per-gallon prices were
estimated by using projected wellhead prices for crude oil and natural gas from the 1997
Annual Energy Outlook (EIA 1996a). '

3.3.2 Transportation Costs of Liquid Fuels

Capital Costs of Distribution Equipment. As indicated above, the per-gallon capital
cost for the transportation of a given liquid fuel was calculated as total annual capital
cost divided by annual fuel use. As stated previously, capital cost was incremental to a
reference case, which, in this portion of the analysis, included RFG-fueled 3X vehicles.
For liquid fuels that were assumed to use existing gasoline distribution equipment
(methanol and ethanol), the cost of converting that equipment was included in the capital
cost calculation, but the cost of constructing the original (gasoline distribution)
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equipment was not. However, capitalization of the original gasoline equipment was
included for methanol and ethanol per-gallon cost estimates.

Operating Costs of Ocean Tankers. A DOE report (DOE 1989) estimated the
operating cost of a methanol tanker to range from well less than $0.01/gal to $0.04/gal
(in 1989 dollars). This analysis assumed a cost of $0.025/gal (1995 dollars), which was
applied to all liquid fuels moved by ocean tanker (i.e., methanol, LPG, and DME).

For alternative fuels, the cost attributable to ocean tanker operation is included
under fuel distribution in the tables in Section 3.4.3. For gasoline and diesel fuel, this
cost was assumed to be part of feedstock cost, because the cost of crude oil acquisition
by refiners usually includes ocean transportation.

Operating Costs of Movement to Service Stations. The operating cost associated
with moving any liquid fuel from marine terminal or domestic production center to
service station was assumed to be similar to that for gasoline, on a volumetric basis. For
gasoline, this cost was estimated to be $0.105/gal. This estimate is based on API and EIA
data (API 1990; API 1996; EIA 1997b). Of that cost, $0.013/gal was estimated to be for
capitalization of the equipment used to move gasoline from marine terminals or domestic
production centers to the service stations. Thus, for all liquid fuels, the operating cost for
movement from marine terminals or domestic production centers is $0.092/gal. For those
liquid fuels that make use of the existing gasoline (or diesel fuel) distribution system,
$0.013/gal in capital costs must be added to the above-estimated capital costs. Table 3.7
summarizes these assumptions.

Table 3.7 Per-Gallon Cost of Transporting Liquid Fuels from Marine
Terminals or Domestic Production Centers to Service Stations
(1995 ¢/physical gal)

Capital Cost of Incremental Capital Cost of Operating Cost of
Gasoline System  Alternative Fuel Systems All Systems
Fuel (¢/gal) (¢/gal) (¢/gal)
Gasoline 1.3 NA 9.2
Methanol 1.3 Varies by year 9.2
Ethanol 1.3 : Varies by year 9.2
LPG NA Varies by year 9.2
DME NA Varies by year 9.2
LNG NA Varies by year 9.2
B20 1.3 Varies by year 9.2

NA = Not applicable.

3.3.3 Transportation Costs of Gaseous Fuels

CNG. The cost of moving natural gas from NG processing plants to service stations
depends to a significant extent on whether that movement is via an existing or a new
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distribution system. Using EIA’s projections of vehicular natural gas use (0.31 TCF by
2015) as a threshold, CNG demand by 3X vehicles was categorized as either less than or
greater than existing system capacity. For demand levels less than or equal to 0.31 TCF,
EIA’s estimates of the transportation and distribution (T&D) margins for natural gas
pipelines were used directly. Those projections can be found in EIA’s AEO 1997 (EIA
1996a). For demand levels above 0.31 TCF, transportation costs must also include the
capital costs of building new pipelines (see Section 3.2.6), as well as operating costs
associated with all distribution facilities and equipment. For this analysis, the
capitalization component of new pipeline operating costs was estimated by using
historical data on natural gas transportation and distribution (T&D) margins (EIA 1995).
Thus, for vehicular CNG use above 0.31 TCF, estimated capital costs were combined
with 77% of EIA’s natural gas T&D margins to yield total NG transportation costs.

Hydrogen. Because all hydrogen pipelines were assumed to be new, the process
used to estimate capital costs was straightforward and uncertainties were kept to a
minimum (see Section 3.2.7). Not so for operating costs. Given the greater compression
requirements of hydrogen pipelines, operating costs should be greater than those for
natural gas pipelines. However, there are no reliable estimates of those costs. For this
analysis, the operating costs estimated for new NG pipelines (i.e., EIA’s T&D margins
less capitalization costs) were used for hydrogen pipelines as well.

3.3.4 Service Station Costs

A gasoline markup of $0.087/gal, reflecting the capital and operating costs of
service stations, was calculated from the API and EIA data referenced above. For
alternative fuels, capitalization costs for station conversion were added to this figure. All
station conversion costs were assigned to alternative fuels (i.e., costs were not spread
over the gasoline dispensed at the station).

No incremental operating costs were assumed for any liquid fuel. This assumption is
consistent with the findings of prior analyses of methanol, ethanol, LPG (and thus, by
extension, DME), and LNG (EEA 1995; Acurex Environmental Corporation 1992).

For CNG, incremental O&M costs of $0.116/GGE were assumed (EEA 1995). For
Hp, incremental O&M costs are expected to be somewhat higher than $0.116/GGE
because Hy compressors operate at higher pressure than CNG compressors. This was not
confirmed by the literature, however. Williams projected O&M costs of approximately
$0.06/GGE (1996), nearly half EEA’s estimate for CNG. It is not clear why the two
studies differ so markedly. Nevertheless, given the great uncertainty in Hp estimates in
general, this analysis assumed the same incremental service station O&M costs for Hj as

for CNG.
3.3.5 Taxes

According to the American Petroleum Institute, total U.S. gasoline taxes average
$0.424/gal (API 1996). Total taxes include federal, state, and local taxes. Federal diesel
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taxes are $0.184/gal, and the median value of state diesel taxes is $0.19/gal (Davis 1997).
On a GGE basis, these taxes equate to $0.391/gal. With the exception of diesel-like fuels,
all fuels considered in this analysis were assumed to be taxed like gasoline,!3 and all
diesel-like fuels were assumed to be taxed like diesel. All taxes are on a per-Btu basis.

3.4 Capital Requirements

46

Annual and cumulative capital costs of fuel production and distribution
infrastructure and per-gallon costs are presented below. Capital requirements were
annualized by using a 10-yr payback and a 10% real-term interest rate. For NG and Hy
pipelines, a 50-yr payback was assumed to better reflect the life expectancy of pipelines
as compared with other components of fuel distribution systems.

3.4.1 Facility and System Requirements

~ Fuel Production Facilities. Table 3.8 summarizes the main components of the
physical production systems required to meet the fuel demands of 3X vehicles. Entries
are the cumulative numbers of plants/facilities and expected production capacities of
each fuel through 2030. On a Btu basis, production capacities are equivalent for all
except the two blended fuels — B20 and F-T50 — for which production need cover only
the blended fraction.

Fuel Distribution Equipment. Tables 3.9 and 3.10 provide cumulative estimates of
the equipment required to distribute the various liquid and gaseous fuels through 2030.
Except for trucks, values shown are also estimates of the total equipment required to
distribute the various fuels in that year. Annual estimates of equipment requirements
were developed, but they are not presented here.

3.4.2 Total Capital Costs

Fuel Production. Table 3.11 presents estimates of the annual cost of phasing in the
production facilities described in Table 3.8. Figure 3.9 presents the same data
graphically. As shown in the figure, hydrogen is by far the most expensive of the fuels
considered, followed by DME and ethanol. At the other end of the spectrum, Fischer-
Tropsch diesel, B20, and LPG are the least expensive. In the case of B20, the low
percentage of methyl soyate in the biodiesel blend greatly reduces incremental capital
costs. As has been noted, all costs are incremental to an RFG-fueled reference case.
Thus, 80% of the blended B20 fuel adds no capital cost.

Table 3.12 presents estimates of incremental capital requirements for building fuel
production facilities cumulatively through 2015, 2020, 2025, and 2030. Again, hydrogen,
DME, and ethanol are the most costly of the alternatives examined, while B20, F-T50,
and LPG are the least costly.

13 Ethanol tax incentives (currently equivalent to $0.51/gal in federal tax exceptions) are not
included.




Table 3.8 Production Facilities and Capacity Required to Supply Demand for 3X Fuel in 2030

High-Market-Share Scenario Low-Market-Share Scenario
Fuel Capacity Facilities Capacity Facilities
M100 45.1 x109 galfyr 40 plants @ 10K MTPD 134 x10° galfyr 11 plants @ 10K MTPD
5 Plants @ 2500 MTPD 5 Plants @ 2500 MTPD
E100 32.4 x10° galiyr 1,168 cellulosic plants 10.1 x 10° galiyr 374 cellulosic plants
21 wet mill plants 4 wet-mill plants
5 dry mill plants No dry-mill plants
LPG 30.0 x 10% galiyr 280 domestic projects 9.3 x 102 galiyr 117 domestic projects
40 foreign projects 6 foreign projects
DME 37.6 x 10° galfyr 65 plants 11.6 x 10% galfyr 20 plants
LNG® 33.8 x 10° galfyr 1,377 plants 10.5 x 10° galfyr 428 plants
CNGP 2.7 teflyr 25,385 wells 0.7 ictfyr 7,878 wells
Ho 8.4 teflyr 59 NG plants @1.7 x 108 sct/d Hy; 2.6 tetlyr 11 NG plants @1.7 x 108 scf/d Ho;
155 solar plants @ 1 x 108 sct/d Hp 60 solar plants @ 1 x 108 scf/d Hp
B20 4.1 x 109 galfyr 1,359 plants 1.3 x 102 galiyr 423 plants
(methyl soyate) {methyl soyate)
F-Ts0 10.6 x 10% gal/yr 1 plant @ 0.7 x 10° galfyr 2.9 x 10° galfyr 2 plants @ 0.7 x 10° galiyr
(FTD) 7 plants @ 1.4 x 102 galfyr (FTD) 1 plant @ 1.4 x 10° galiyr

& Requires additional NG processing plants, the costs of which are included in Section 3.4 estimates.
® Requires additional NG wells (see CNG), the costs of which are included in Section 3.4 estimates.

Fuel Distribution. Figure 3.10 presents annual capital costs for developing the
infrastructure to distribute fuels under the high- and low-market-share scenarios.
Table 3.13 presents those costs cumulatively through the years 2015, 2020, 2025, and
2030 for both scenarios.

The cumulative cost of building the infrastructure for biodiesel is insignificant
relative to the other fuels: $32 million vs. $8 billion for ethanol, the next least expensive
alternative under the high scenario. Infrastructure costs for liquid fuels (ranging from $8
to $30 billion under the high scenario) are significantly less than those for gaseous fuels
(ranging from $144 to $268 billion under that scenario). This relationship holds in all
years of both scenarios and remains true even when the payback period for natural gas
and hydrogen pipelines is raised from 10 to 50 years. With a 50-yr payback, capital costs
for CNG and Hj distribution systems drop (to $103 and $187 billion, respectively, under
the high scenario), but they are still far higher than those for liquid fuels. The same
pattern occurs under the low scenario.

Total Costs. For most of the fuels considered in this analysis, production costs far

exceed distribution costs (see Tables 3.12 and 3.13). This phenomenon is particularly
true for B20 (where production costs are approximately two orders of magnitude higher
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Table 3.9 Distribution Facilities Required to Supply Liguid Fuel Demand
of 3X Vehicles in 2030°

Terminal
Ocean Tankage Truck Pipelines Service
Tankers (10°bbl) Racks TrucksP (mi) Rail Cars Barges Stations

Low-Market-Share Scenario

M100 86 18.4 52 1,410 0 0 o 11,360
E100 0 13.8 46 1,338 846 907 24 11,360
LPG 11 12.4 41 1,290 846 0 10 11,360
DME 74 15.8 52 1,214 0 0 0 11,360
LNG (] 104 35 2,042 0 117 0 11,360
B20 0 1.6 0 0 0 67 0 0

High-Market-Share Scenario

M100 275 771 176 4,653 2,188 0 0 36,572
E100 0 44.3 148 3,781 2,707 2,920 76 36,572
LPG 72 40.0 121 3,441 1,993 159 24 36,572
DME 237 66.3 168 4,006 1,914 0 0 36,572
LNG 0 33.6 113 6,189 0 1,063 0 36,572
B20 0 5.1 0 0 0 215 0 0

2 Physical number of new or converted facilities or equipment.
® Including replacements.

Table 3.10 Distribution Facilities Required than distribution costs), E100, DME
to Supply Gaseous Fuel Demand of and M100. For LPG, which requires
3X Vehicles in 2030 additional pipeline capacity,
production costs only slightly exceed

Pipelines Service

(mi)  Stations distribution costs. The same holds
true for hydrogen, but both costs far

Low-Market-Share Scenario exceed those of any other alternative
CNG 39,247 11,360 examined. CNG (for which additional
B 62807 11860 pipelines account for much of the
High-Market-Share Scenario incremental cost) is the sole
CNG 178,631 36,572 exception to this pattern.
Hz 202,191 36,572

3.4.3 Unit Costs

2 Physical number of new or converted facilities or
equipment.

Figure 3.11 illustrates the unit
cost (in GGEs) of each fuel over time for both scenarios. As noted above, these costs are

based on estimated capital costs, not prices. No attempt has been made to predict pump
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Figure 3.9 Annual Costs for Building Fuel-Production Facilities
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Table 3.12 Incremental Capital Table 3.13 Incremental Capita!l
Requirements for Building Fuel Requirements for Building Fuel
Production Facilities, Cumulative Distribution Facilities, Cumulative
through 2015, 2020, 2025, and 2030 through 2015, 2020, 2025, and 2030
($ billion) ($ billion)
Fuel 2015 2020 2025 2030 Fuel 2015 2020 2025 2030
L ow-Market-Share Scenario Low-Market-Share Scenario
M100 0.2 2.1 7.2 18.6 M100 0.0 0.4 1.6 47
E100 0.3 1.8 6.4 18.2 E100 0.0 0.2 0.6 1.8
LPG 0.04 0.5 2.0 5.0 LPG 0.0 0.3 0.9 2.8
DME 0.5 3.8 13.8 356 DME 0.0 0.5 1.9 5.4
LNG 0.1 0.5 1.8 53 LNG 0.1 0.6 2.3 6.9
CNG 0.03 0.4 1.6 4.6 CNG:10yr 0.4 0.7 29 19.0
Ho 0.1 0.9 115  84.0 CNG:50yr 0.1 0.7 29 149
B20 0.01 0.1 04 0.9 Ho: 10 yr 0.5 52 213 623
F-T50 0.1 1.1 22 3.9 Ha: 50 yr 0.3 36 148 435
High-Market-Share Scenario B20 0.00 0.00 0.00 001
F-T50 0.00 0.00 000 0.00
M100 17 12.5 389 803 I .
E100 23 1141 38.2 80.2 High-Market-Share Scenario
LPG 0.5 3.3 113 199 M100 0.4 27 93 206
DME 3.9 22.8 741 138.0 E100 0.1 1.1 3.7 8.1
LNG 0.5 3.2 105 217 LPG 0.3 1.6 6.1 144
CNG 0.4 27 9.2 19.9 DME 0.5 3.1 107 238
Ho 0.8 54 61.3 290.3 LNG 0.6 40 136 297
B20 0.1 0.6 2.0 3.4 CNG:10yr 0.7 9.4 545 1436
F-T50 0.9 3.4 7.9 14.2 CNG:50yr 0.7 7.6  40.0 10286
He: 10 yr 5.0 35.9 1235 2684
Ho: 50 yr 35 250 862 1873
prices. As shown in the figure, unit costs of B20 0.00 000 001 003
F-T50 0.00 0.00 000 0.00

DME, ethanol, LPG, and, to a certain extent,
methanol are quite high in the first year
relative to later years. This is one area where the cost of the fuel and the price producers
are likely to charge for it may be expected to differ dramatically. High initial costs reflect
the need to construct facilities or purchase equipment with capacities far in excess of
projected demand volumes for that initial year. As demand increases, economies of scale
permit unit costs to decline. This decline does not occur for so-called volume fuels like
RFD, RFG, natural gas, and B20,!4:15 which were assumed to be produced in large-scale
plants from the outset and thus had already achieved economies of scale by 2007.

14 Because of economies of scale, LPG cost declines by nearly 50% between 2007 and 2010. This
decline is not readily apparent in Figure 3.11b because of the wide range of costs shown.

15 Because methyl soyate comprises only 20% of the blended B20 fuel, unit cost more closely
resembles that of RFD, the 80% component.
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Figure 3.10 Annual Costs for Building Fuel-Distribution Facilities
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Figure 3.11 Unit Costs of Potential 3X Fuels (1995$/GGE)
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Hydrogen, which was assumed to be produced in relatively small-scale decentralized
facilities (centralized production of hydrogen will be examined in phase 3 of this
analysis), never achieves economies of scale. Although scale economies are achieved for
CNG production, the need to expand distribution capacity by building new pipelines
greatly increases unit costs in the latter years of the analysis.

Similar relationships exist for the low-market-share scenario. However, all of the
alternative fuels are more expensive than under the high-market-share scenario. This
difference demonstrates the importance of generating sufficient demand for new
transportation fuels in order to achieve economies of scale. Again, CNG is an exception
in the latter years of the analysis, primarily because of the need for expensive pipeline
additions.

Of the 11 fuels examined in this study, the blended Fischer-Tropsch diesel (F-T50)
exhibits the most distinctive cost curve, undoubtedly a result of assumptions about
facility sizes. As discussed above, FTD was assumed to be produced in three different-
sized plants. The smallest, essentially a prototype facility with 5,000-BPD rated capacity,
equates to double that capacity (or 130 million GGE per year) when blended with
conventional diesel. In the first few years of production at this scale, the capital
component of per-gallon cost initially declines because of growth in fuel demand and
fairly constant annual capital cost. When the first 50,000 BPD facility (1.3 billion GGE
per year blended fuel) comes on-line, per-gallon cost jumps because year-to-year demand
increases by approximately 60%, while capital costs of production increase by a factor of
five. Unit cost declines in subsequent years as, again, demand grows, while annual
capital cost remains constant.

Tables 3.14 and 3.15 disaggregate the unit cost components of the fuels for the
years 2015, 2020, 2025, and 2030. Note that changing the payback period for natural gas
and hydrogen pipelines has a significant effect on the cost of these two fuels. Under the
high-market-share scenario, CNG is about $0.15/GGE cheaper and Hj, is about
$0.40/GGE cheaper with a 50-yr, as opposed to a 10-yr, payback period.
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Table 3.14 Unit Costs of Potential 3X Vehicle Fuels by Component: Low-
Market-Share Scenario (1995$/GGE)

Production Costs
Fuel Service

Fuel Feedstock Production Distribution Station Taxes Total
2015
RFG 0.540 0.241 0.108 0.087 0.424 1.400
M100 0.214 0.592 0.368 0.137 0.424 1.735
E100 1.678 0.935 0.170 0.133 0.424 3.339
LPG 0.600 0.219 0.196 0.142 0.424 1.582
DME 0.324 1.977 0.318 0.158 0.424 3.202
LNG 0.343 0.345 0.188 0.250 0.424 1.549
CNG: 10 yr 0.258 0.280 0.170 0.455 0.424 1.587
CNG: 50 yr 0.258 0.280 0.170 0.455 0.424 1.587
Ho: 10 yr 0.380 0.370 1.630 0.589 0.424 3.394
Ho: 50 yr 0.380 0.370 1.060 0.589 0.424 2.823
RFD 0.504 0.170 0.095 0.087 0.391 1.246
B20 0.778 0.153 0.096 0.087 0.391 1.505
F-T50 0.362 0.630 0.010 0.087 0.391 1.480
2020
RFG 0.540 0.241 0.108 0.087 0.424 1.400
M100 0.214 0.592 0.364 0.136 0.424 1.731
E100 0.792 0.745 0.169 0.133 0.424 2.263
LPG 0.600 0.219 0.156 0.142 0.424 1.542
DME 0.324 1.436 0.298 0.158 0.424 2.641
LNG 0.343 0.310 0.188 0.250 0.424 1.514
CNG: 10 yr 0.258 0.277 0.170 0.455 0.424 1.584
CNG: 50 yr 0.258 0.277 0.170 0.455 0.424 1.584
Ho: 10 yr 0.380 0.409 1.630 0.589 0.424 3.433
Ho: 50 yr 0.380 0.409 1.060 0.589 0424  2.863
RFD 0.504 0.170 0.095 0.087 0391 1246
B20 0.778 0.150 0.096 0.087 0.391 1.502
F-T50 0.362 0.640 0.010 0.087 0.391 1.490
2025
RFG 0.540 0.241 0.108 0.087 0.424 1.400
M100 0.214 0.523 0.354 0.134 0.424 1.649
E100 0.547 0.721 0.168 0.131 0.424 1.991
LPG 0.600 0.204 0.1582 0.139 0.424 1.519
DME 0.324 1.214 0.291 0.154 0.424 2.407
LNG 0.343 0.294 0.185 0.241 0.424 1.486
CNG: 10 yr 0.258 0.261 0.170 0.441 0.424 1.553
CNG: 50 yr 0.258 0.261 . 0.170 0.441 0.424 1.553
Ho: 10 yr 0.298 1.906 1.546 0.567 0.424 4.741
Ho: 50 yr 0.298 1.906 1.008 0.567 0.424  4.203
RFD 0.504 0.170 0.095 0.087 0.391 1.246
B20 0.778 0.146 0.096 0.087 0.391 1.498
F-T50 0.362 0.232 0.010 0.087 0.391 1.082

Continued




Table 3.14 Unit Costs of Potential 3X Vehicle Fuels by Component: Low-
Market-Share Scenario (1995$/GGE) (Cont.)

Production Costs
Fuel Service

Fuel Feedstock Production Distribution Station Taxes Total
2030
RFG 0.540 0.241 0.108 0.087 0.424 1.400
M100 0214 0.510 0.347 0.130 0.424 1.625
E100 0.476 0.760 0.170 0.128 0.424 1.957
LPG 0.599 0.155 0.168 0.136 0.424 1.482
DME 0.324 0.961 0.287 0.149 0.424 2.145
LNG 0.343 0.283 0.182 0.230 0.424 1.462
CNG: 10yr 0.258 0.229 0.506 0.424 0.424 1.841
CNG: 50 yr 0.258 0.229 0.369 0.424 0.424 1.704
Ho: 10 yr 0.153 3.523 1.449 0.542 0.424 6.091
Hp: 50 yr 0.153 3.523 0.948 0.542 0.424 5590
RFD 0.504 0.170 0.095 0.087 0.391 1.246
B20 0.778 0.136 0.096 0.087 0.391 1.488
F-T50 0.362 0.199 0.010 0.087 0.391 1.049
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Table 3.15 Unit Costs of Potential 3X Vehicle Fuels by Component:
High-Market-Share Scenario (1995$/GGE)

Production Costs

Fuel Service

Fuel Feedstock Production Distribution Station Taxes Total
2015
RFG 0.540 0.241 0.108 0.087 0.424 1.400
M100 0.214 0.523 0.358 0.136 0.424 1.656
E100 1.671 0.628 0.169 0.133 0.424 3.025
LPG 0.600 0.219 0.154 0.142 0.424 1.540
DME 0.324 1.473 0.303 0.158 0.424 2.681
LNG 0.343 0.325 0.188 0.250 0.424 1.529
CNG: 10 yr 0.258 0.140 0.170 0.455 0.424 1.447
CNG: 50 yr 0.258 0.140 0.170 0.455 0.424 1.447
Ho: 10 yr 0.380 0.408 1.630 0.589 0.424 3.432
Hp: 50 yr 0.380 0.408 1.060 0.589 0.424  2.862
RFD 0.504 0.170 0.095 0.087  0.391  1.246
B20 0.778 0.150 0.096 0.087 0.391 1.502
F-T50 0.385 0.370 0.010 0.087 0.391 1.243
2020
RFG 0.540 0.241 0.108 0.087 0.424 1.400
M100 0.214 0.510 0.356 0.136 0.424 1.640
E100 0.764 0.730 0.171 0.132 0.424 2.222
LPG 0.599 0.219 0.167 0.142 0.424 1.551
DME 0.324 1.280 0.297 0.157 0.424 2.481
LNG 0.343 0.305 0.187 0.247 0.424 1.506
CNG: 10 yr 0.258 0.138 0.398 0.451 0.424 1.668
CNG: 50 yr 0.258 0.138 0.303 0.451 0.424 1.574
Ho: 10 yr 0.380 0.424 1.606 0.583 0.424 3.417
Hp: 50 yr 0.380 0.424 1.045 0.583 0.424  2.856
RFD 0.504 0.170 0.095 0.087  0.391  1.246
B20 0.778 0.149 0.096 0.087 0.391 1.500
F-T50 0.385 0.234 0.010 0.087 0.391 1.108
2025
RFG 0.540 0.241 0.108 0.087 0.424 1.400
M100 0.214 0.499 0.351 0.133 0.424 1.620
E100 0.565 0.706 0.170 0.130 0.424 1.995
LPG 0.597 0.199 0.177 0.138 0.424 1.535
DME 0.324 1.128 0.290 0.152 0.424 2.318
LNG 0.343 0.286 0.184 0.237 0.424 1.474
CNG: 10 yr 0.258 0.129 0.739 0.435 0.424 1.985
CNG: 50 yr 0.258 0.129 0.511 0.435 0.424 1.757
Ho: 10 yr 0.295 1.850 1.513 0.559 0.424 4.641
Ho: 50 yr 0.295 1.850 0.987 0.559 0.424 4115
RFD 0.504 0.170 0.095 0.087 0.391 1.246
B20 0.778 0.143 0.096 0.087 0.391 1.495
F-T50 0.385 0.169 0.010 0.087 0.391 1.042

Continued
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Table 3.15 Unit Costs of Potential 3X Vehicle Fuels by Component:
High-Market-Share Scenario (1995%/GGE) (Cont.)

Production Costs

Fuel Service

Fuel Feedstock Production Distribution Station Taxes Total
2030
RFG 0.540 0.241 0.108 0.087 0.424 1.400
M100 0.214 0.501 0.341 0.124 0.424 1.604
E100 0.512 0.727 0.168 0.122 0.424 1.953
LPG 0.596 0.089 0.177 0.129 0.424 1.414
DME 0.324 0.593 0.287 0.141 0.424 1.769
LNG 0.343 0.253 0.178 0.210 0.424 1.407
CNG: 10 yr 0.258 0.106 0.753 0.394 0.424 1.935
CNG: 50 yr 0.258 0.106 0.518 0.394 0.424 1.700
Ho: 10 yr 0.174 2.906 1.268 0.496 0.424 5.267
Hop: 50 yr 0.174 2.806 0.835 0.496 0.424 4.835
RFD 0.504 0.170 0.095 0.087 0.391 1.246
B20 0.778 0.121 0.096 0.087 0.391 1.473
F-T50 0.385 0.150 0.010 0.087 0.391 1.023




Section 4
Total Fuel-Cycle Analysis

Petroleum savings by a 3X technology come from two sources: tripling fuel
economy and fuel substitution. Tripling fuel economy reduces energy consumption for
vehicle operation by 67% and, if the replacement fuel is petroleum-based, results in
comparable petroleum displacement (100% if the replacement fuel is not petroleum-
based). However, if resource recovery, fuel production, and other upstream processes are
highly energy- and/or petroleum-intensive, total energy and petroleum savings could be
much less. This reduction in savings is particularly dramatic for nonpetroleum fuels, like
hydrogen. Because energy-cycle analysis examines all the stages in the process of
vehicle and fuel production and distribution, as well as end-use consumption, it permits a
more definitive assessment of energy and petroleum savings (and emissions reductions)
than standard end-use analysis, which, by definition, is limited to vehicle operation. For
new fuel- and propulsion-system technologies with significantly different energy cycles,
the two approaches could produce different conclusions.

Figure 4.1 illustrates the fuel cycle and vehicle cycle,!® which, together, comprise
the total energy cycle. For a given transportation fuel, a fuel cycle includes the following
chain of processes: primary energy recovery; primary energy transportation and storage;
fuel production; fuel transportation, storage, and distribution; and vehicular fuel
combustion. Fuel-cycle activities before vehicular fuel combustion are usually referred to
as upstream activities (which result in upstream energy use and upstream emissions).
Primary energy resources (e.g., crude oil, natural gas, and coal) are usually referred to as
energy feedstocks, and fuels are referred to as, for example, gasoline, diesel, and
electricity.

16 A 3X vehicle is likely to differ from a conventional vehicle in more than just fuel economy.
Lightweight materials, such as aluminum, magnesium, plastic, and composites, will probably be
used extensively, thus requiring changes in production processes, manufacturing inputs, and
suppliers. The powertrain, most likely a hybrid, will be very different from a conventional ICE
powertrain, thus requiring additional production changes. All of these variables lead to
significantly different energy use and emissions of the vehicle cycle, which includes material
recovery and fabrication, vehicle assembly, and vehicle disposal/recycling (see Figure 4.1). The
energy and emissions impacts of 3X vehicle manufacturing and material fabrication are
addressed in other DOE-sponsored efforts. This study addresses only fuel-cycle (including
vehicle operations) energy use and emissions.
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Figure 4.1 Fuel Cycles and Vehicle Cycles for Transportation Energy and
Emissions Analysis

In this analysis (as well as in the prior Phase 1 effort), technology-specific rates of
energy use and emissions produced were estimated by using the GREET (Greenhouse
gases, Regulated Emissions, and Energy use in Transportation) model (Wang 1996).
Rates were then applied to forecasts of miles traveled and energy use by 3X and
conventional vehicles in the reference, high-, and low-market-share scenarios as
produced in the IMPACTT model. The resulting estimates of operational and upstream
energy use were then combined to produce annual estimates of total energy (all energy
sources), fossil energy (petroleum, natural gas [NG], and coal), and petroleum for each
of the candidate 3X technologies. Similarly, estimates of operational and upstream
emissions were combined to produce annual estimates of criteria pollutants and
greenhouse gases for each of the 3X technologies.

4.1 GREET Analytical Approach

60

GREET calculates energy use and emissions associated with a variety of alternative
transportation fuels and technologies. GREET includes both fuel and vehicle cycles and
can calculate energy and emissions for either or both.

For this analysis, GREET was used to calculate energy and emission rates for the
fuel cycle only. In this mode, GREET takes into account energy use for primary
feedstock recovery and transportation, fuel production, and fuel transportation, storage
and distribution. GREET includes emissions caused by process fuel combustion, fuel
leakage, and fuel evaporation. Upstream energy use and emissions are calculated in Btu
and g/mmBtu of fuel delivered at the pump.
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GREET then calculates operational energy use (which is a member of both the
vehicle and the fuel cycle, as shown in Figure 4.1) from vehicle fuel economy. Vehicular
emissions for conventional ICE vehicles fueled with gasoline and diesel are estimated
with EPA’s Mobile model.!” Vehicular emissions for other fuels and propulsion systems
are calculated from baseline conventional vehicle emissions and anticipated changes
between baseline vehicles (gasoline or diesel) and new technologies. Depending on the
application, operational energy use may be assigned to either the vehicle or fuel cycle. In
this analysis, it was included in the fuel cycle.

Within GREET, fuel-cycle and vehicle-cycle results are converted into per-mile
rates, which may then be reported separately or combined into a total energy-cycle result.
Fuel economy is used to convert fuel-cycle energy use and emissions from g/mmBtu to
g/mi; lifetime vehicle utilization is used to convert vehicle-cycle energy use and
emissions from g/vehicle to g/mi.

The key outputs from the GREET model are gram-per-mile (g/mi) emissions and
Btu-per-mile (Btu/mi) energy use for various fuel cycles. GREET includes emissions of
volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NOy),
particulate matter smaller than 10 pm (PM;g), sulfur oxides (SOy), methane (CHy),
nitrous oxide (N7O), and carbon dioxide (CQO3). The three greenhouse gases (GHGs)
(CHg4, N2O, and CO,) are then weighted by their global warming potentials to estimate
CO;z-equivalent GHG emissions. In this study, the global warming potential factors
recommended by the Inter-Governmental Panel on Climate Change (IPCC) were used to
calculate CO,-equivalent GHGs. Those factors are 1 for CO,, 21 for CHy, and 310 for
N7O.

Although GREET generates both upstream and operational energy use and
emissions, only upstream results are fed into the IMPACTT model. Energy use during
vehicle operation is calculated directly in IMPACTT. Emissions from vehicle operations
are calculated in IMPACTT in a way similar to that in GREET. In fact, the two models
share some of the same assumptions and equations used to calculate emissions from
vehicle operations. The notable difference between GREET and IMPACTT is that
GREET estimates emission rates, while IMPACTT estimates total emissions for a fleet
of vehicles. Thus, while new-vehicle market penetration and stock are not used in
GREET, they are crucial elements in IMPACTT (Mintz et al. 1994).

4.1.1 Upstream Calculations

As stated above, only the upstream energy and emission rates generated by GREET
are fed into IMPACTT. Upstream calculations follow these steps. For a given stage in
the fuel cycle, energy use (in Btu per million Btu of energy throughput) is calculated and
allocated to different process fuels (e.g., NG, residual oil, diesel, coal, and electricity).

17 The current version of EPA’s Mobile model is Mobile5b. The next version — Mobile6 — is
scheduled to be released in late 1998 or early 1999,
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Fuel-specific energy use, together with fuel-specific emission factors (specific to a
particular combination of fuel and combustion technology), is then used to calculate
combustion emissions for the stage. GREET has an archive of combustion emission
factors for various combustion technologies that use different fuels and are equipped
with different emission control technologies. Combustion emission factors for VOC, CO,
NOy, PMjp, CHy, and N7O were derived primarily from data published by the EPA
(EPA AP-42 document). For most fuels, emission factors for sulfur oxide are calculated
from sulfur content, assuming that all sulfur contained in process fuels is converted into
sulfur dioxide (SO3). Similarly, carbon dioxide emission factors are calculated by a
carbon balance approach (i.e., the carbon contained in the fuel burned, minus the carbon
contained in combustion emissions of VOC, CO, and CHy, is assumed to be converted to
CO3). The GREET calculation logic for upstream emissions is presented in Figure 4.2.

Emission Factors Energy Efficiencies Energy Product Shares
Combustion Urban vs.
Technology Nonurban
Inputs: Shares Emission Shares

Calculations:
Energy

Consumption by |
Energy Product

7T\

Y

Emissions

Yy

Y A

All Location Emissions > Urban Emissions

Figure 4.2 GREET Calculation Logic for Upstream Emissions

In the Phase 2 analysis, emissions of the five criteria pollutants were further
separated into total emissions and urban emissions. The major concern with respect to
emissions is the effect on human health of exposure to air pollution created by these
pollutants. Clearly, emissions that occur in remote, sparsely populated areas pose far less
of a health threat than those in densely populated urban areas. Although GREET is not a
location-specific model, the issue of human exposure warrants some degree of spatial
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analysis.!® Thus, emissions are separated into total and urban emissions to provide a
better indication of health effects from a given combination of 3X fuel and propulsion
system technologies.

GREET uses information on facility locations to separate upstream emissions into
the two categories. For facilities located inside urban areas, all emissions are considered
urban; emissions from all other facilities are considered to be non-urban. In this analysis,
“urban” was defined as the 125 metropolitan areas specified in the 1992 Energy Policy
Act. On the basis of a general understanding of the geographic location of fuel
production facilities (e.g., petroleum refineries, electric power plants, etc.), a set of ratios
was approximated. Corresponding to the share of each facility type located in urban
areas, the ratios were then used to allocate emissions from each facility type between
urban and non-urban areas.

4.1.2 Fuel-Cycle Paths

To estimate upstream energy and emissions, a fuel-cycle path from primary energy
recovery to delivery at the fuel pump must be specified for each technology option. The
* base case or benchmark fuel-cycle path was defined as petroleum to RFG for
conventional vehicles. In this study, 13 fuel-cycle paths were analyzed (see Figure 2.7).

As Figure 2.7 indicates, hydrogen was assumed to be produced from either NG or
solar energy, and ethanol was assumed to be produced from either corn or biomass. Prior
to 2020, all hydrogen was assumed to be produced from NG via steam reforming;
beginning in 2020, some production was assumed to come from solar energy (via water
electrolysis). Similarly, all ethanol production was assumed to be from corn until 2016,
when production from cellulosic biomass was assumed to begin. Over time, as more new
plants begin producing hydrogen from solar energy and ethanol from cellulosic biomass,
these technologies’ respective shares of total hydrogen and total ethanol production were
assumed to rise steadily.

Petroleum to RFG. This path includes crude oil recovery in oil fields; crude oil
transportation and storage; crude oil refining; and gasoline (i.e., RFG) transportation,
storage, and distribution. Among the upstream processes for this fuel cycle, crude oil
refining consumes the most energy (with an energy efficiency of 82.5%, which is slightly
below that of refining crude to conventional gasoline). As for GHG emissions, the
venting of associated gas in oil fields is a significant source of CH, emissions.

Petroleum to Diesel. This path includes crude oil recovery, transportation, and
storage; diesel production in crude refineries; and diesel transportation, storage, and

18 Ideally, results from GREET could be used in an emissions inventory model to generate an
emissions distribution by geographic location. The location-specific inventory could then be fed
into an air quality model, the results of which could be combined with a population exposure
model to assess human health effects of air pollution.
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distribution. Again, the largest energy requirement for this cycle occurs at petroleum
refineries (with an energy efficiency of 90%).

Petroleum to LPG. This path includes crude oil recovery, transportation, and
storage; LPG production in petroleum refineries; and LPG transportation, storage, and
distribution. Despite an energy efficiency of 93.5%, LPG production at petroleum
refineries consumes the most energy; transportation of imported LPG consumes the next
largest share. For this analysis, a constant 40% of LPG supply was assumed to come via
this pathway (i.e., from crude oil) under all scenarios. This assumption is based on
current U.S. propane production shares (EIA 1997a; EIA 1997c¢).

NG to CNG. On this path, natural gas is produced in, and processed near, NG fields
and transported through pipelines to service stations where it is compressed to about
300 psi. NG pipelines are powered by NG-fueled engines and turbines. Of the stages
making up this path, NG compression (by means of electric compressors at dispersed
refueling facilities) has the lowest energy efficiency (95%).

NG to LNG. On this path, natural gas is produced in and processed near NG fields,
liquefied at LNG plants that are adjacent to NG processing plants, and then transported
by rail and truck to LNG service stations. Of the stages making up this path, NG
liquefaction uses the most energy (with an energy efficiency of 85%).

NG to LPG. For domestic supplies, this path includes natural gas recovery in NG
fields, LPG production at NG processing plants near NG fields, and LPG transportation
via rail or truck to LPG service stations. For imports, LPG is assumed to be transported
to major U.S. ports via ocean tanker and then transported to LPG refueling stations via
truck and pipeline. Though high relative to other fuels, the efficiency of LPG production
(96.5%) is the lowest of all the stages in the pathway. In this analysis, NG was assumed
to account for 60% of LPG supply under all scenarios.

NG to DME. On this path, natural gas is recovered in and processed near NG fields.
DME is then produced at plants that are adjacent to NG processing plants. DME
production has the lowest energy efficiency (70%) of these upstream activities. For this
analysis, all DME was assumed to be produced overseas from inexpensive NG, shipped
by ocean tanker to main U.S. ports, and transported to service stations via pipeline and
truck.

NG to Methanol. The upstream stages of this path are similar to those of the NG-to-
DME path except that methanol is produced instead of DME. For this analysis, all
methanol was assumed to be imported, shipped to main U.S. ports via ocean tanker, and
then transported to service stations via pipeline and truck. Methanol production has the
lowest energy efficiency (65%) of all the upstream activities in this path.

NG to F-T Diesel. On this path, natural gas is recovered in and processed near NG
fields. At F-T plants that are adjacent to NG processing plants, F-T diesel is produced
and blended with conventional diesel. F-T diesel blends are then transported to service
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stations in the same way as conventional diesel. Among the upstream activities of this
cycle, F-T diesel production has the lowest energy efficiency (57%).

NG to H,. Hydrogen can be produced in centralized facilities (like it is now) or in
decentralized facilities (like refueling stations using NG). The advantage of decentralized
production is its avoidance of expensive H, distribution infrastructure. For this analysis,
centralized production was assumed because the technology is proven and economies of
scale can be realized. Although both liquid and gaseous Hj can be used for Hy-powered
fuel-cell vehicles (FCVs), gaseous Hy was assumed for this analysis because liquefaction
poses additional energy losses and emissions, and the transportation and storage of liquid
Hj can be expensive.

Under this path, NG is recovered in and processed near NG fields, Hj is produced at
centralized plants adjacent to NG processing plants, and gaseous Hj is transported to
service stations via pipeline. In this analysis, Hy was assumed to be compressed to about
6,000 psi at service stations. With an energy efficiency of 68%, H; production consumes
the most energy of all the stages in this path. Because Hj contains no carbon and no
carbon sequestration was assumed, the conversion of NG to Hj produces considerable
CO; emissions.

Solar Energy to H;. Production of Hj from solar energy via water electrolysis
offers significant energy and environmental benefits, as well as the possibility of a
practically unlimited energy source. In this study, H, was assumed to be produced in
centralized facilities in such regions as the Southwestern United States where solar
energy is abundant. Hydrogen was then assumed to be compressed moderately (to about
100 psi) and transported via pipeline to Hj refueling stations. There, gaseous Hy was
assumed to be compressed to about 6,000 psi for use by Hy-powered FCVs. Electricity
was assumed to be used for compressing Hj and powering pipeline motors, and
parameters typical of U.S. average electric generation were used to estimate emissions of
criteria pollutants and GHGs from the electricity used. Note that the same assumptions
were applied to Hy transportation and compression for the above NG-to-H; path. Energy
efficiencies for gaseous Hj transportation via pipeline and Hy compression at service
stations were assumed to be 94% and 90%, respectively.

Corn to Ethanol. This path includes corn production and transportation; ethanol
production; and ethanol transportation, storage, and distribution. GHG emissions from
corn production come from fuels used for farming, harvesting, and corn drying, together
with the amount from fertilizers and herbicides used during corn farming. Both wet- and
dry-milling technology is currently used in the United States to produce ethanol. Wet-
milling plants now account for about two-thirds of ethanol production capacity; dry-
milling plants account for the remaining third. Because of tax incentives that are
available in certain states and their generally lower capital requirement, most newer
ethanol plants are small-scale, dry-milling plants. In this analysis, future corn-to-ethanol
plant capacity was assumed to be evenly split between the two technologies (i.e., half
wet-milling and the other half dry-milling). Note that this assumption implies that more
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dry-milling plants will be built in the future than wet-milling plants. For a detailed
discussion of the technical assumptions regarding this cycle, see Wang et al. (1997b).

Biomass to Ethanol. This path includes biomass production and transportation;
ethanol production; and ethanol transportation, storage, and distribution. Biomass
includes both woody and herbaceous feedstocks. In this analysis, the energy and
emissions associated with biomass production were calculated in the same way as those
for producing ethanol from corn. At cellulosic ethanol plants, the lignin portion of
biomass was assumed to be burned to generate steam and electricity in co-generation
systems. While combustion of biomass undoubtedly releases CO, emissions, this CO»
came from the atmosphere through photosynthesis. Thus, CO; emissions from biomass
combustion were treated as a transfer back into the atmosphere with a net effect of zero.
For the same reason, CO; emissions from ethanol combustion by ethanol-powered
vehicles were also assigned a net value of zero.

The electricity generated at ethanol plants was assumed to be exported to the power
grid. Emissions credits for the generated electricity were calculated in GREET as a
function of the amount of electricity generated and average emissions associated with
electricity generation in U.S. electric utility systems.

Soybeans to Biodiesel. This path includes soybean farming; soybean transportation;
soy oil extraction and transesterification; biodiesel blending; and biodiesel blend
transportation, storage, and distribution. Among the upstream activities for this path,
biodiesel production (including extraction and transesterification of soy oil) and soybean
farming consume most of the energy and produce most of the emissions.

4.2 IMPACTT Analytical Approach

The IMPACTT model was used to estimate annual energy consumption and
emissions production by conventional and 3X vehicles. IMPACTT is a spreadsheet
model that simulates the movement of vehicles through the light-duty fleet. IMPACTT
incorporates a vehicle stock model that adds new vehicles (3X or conventional) and
retires old vehicles from an initial vehicle population profile to produce annual profiles
of the auto and light-truck population by age and technology; a usage module to compute
vehicle-miles-traveled (VMT), oil displacement, and fuel use by technology; and an
emissions module to compute upstream and operational emissions of criteria pollutants
and GHGs for autos and light trucks, again by technology. The usage module computes
the petroleum that would have been consumed by conventional vehicles in the absence of
3X vehicles, the petroleum equivalent (i.e., GGEs) consumed by 3X vehicles, and the net
savings due to the presence of 3X vehicles in the fleet.!® Upstream energy use is
computed post hoc, as a function of operational energy use and a series of GREET-
developed rates, which are specific to each potential 3X fuel.

19 Unlike GREET, IMPACTT’s fuel-use module computes only downstream or operational energy
use. Upstream energy use is then computed as the product of operational energy use and a
GREET-supplied rate.
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In IMPACTT, emissions of NOy, CO, VOC, and PM; are computed separately for
autos and light trucks by using age-based tailpipe emission rates obtained from EPA’s
MOBILESb and PARTS models for conventional SI and CI engines operating on
gasoline and diesel fuel, respectively, and average operational emission rates for
nonconventional engines and fuels estimated with assumptions presented in
Section 4.2.1. Operational emissions of SOy and CO; are computed as a function of fuel
consumption and fuel specifications (see Table 2.5) by using assumptions from GREET.
Upstream emission rates for all fuels (conventional as well as potential 3X fuels) are also
obtained from GREET.

Version 5.0 of IMPACTT (IMPACTTS) was used for this analysis. Major changes
in the emissions module account for most of the difference between this version and the
one documented earlier (Mintz et al. 1994). On the emissions side, all emissions are now
computed separately for autos and light trucks; emissions of greenhouse gases (CO3,
CH,4 and N,O) have been added, along with an estimate of total greenhouse gases; and
upstream emissions of criteria pollutants and GHGs have been added. On the energy
side, operational energy use is now broken down into total energy, fossil fuel, and
petroleum; upstream energy has been added (and is broken down into the same
categories); and a procedure for estimating urban emissions of criteria pollutants has
been developed.

Figure 4.3 illustrates IMPACTTS5’s structure. Outputs include estimates of the
quantity of oil consumed and emissions produced by conventional vehicles, the quantity
of alternative fuels consumed and emissions produced by advanced-technology vehicles,
and the total quantity of fuel consumed and emissions produced by all vehicles expected
to be on the road in a given year under a given scenario.
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Figure 4.3 Structure of the IMPACTT5 Model
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4.2.1 Emissions Calculations

Emission standards are an important reason for considering alternative propulsion
systems in the PNGV program. Approximately 40% of model year 1994 (MY94)
passenger cars met the Phase 1 (commonly called Tier 1) emission requirements of the
Clean Air Act Amendments; by MY96, all passenger cars were required to be in
compliance with Tier 1 standards. These standards — for carbon monoxide (CO), oxides
of nitrogen (NOy), non-methane hydrocarbons (NMHC), and particulate matter (PM) —
are shown in Table 4.1. Note that the standard for particulate matter (PM) applies only to
light-duty diesels. Tier 2 standards that require a further 50% reduction in emissions
have been proposed but are not yet mandated. EPA is scheduled to rule on the need for
these more stringent standards by December 1999.

Table 4.1 Five-Year or 50,000-mi Emission Standards for Light-
Duty Vehicles: 49 States and California (g/mi)

First HCHO
Standard MY NMHC NMOG CO NOy PM (formaldehyde)

49 States (mandated)
Tier 1 1994 0.25 N/AZ 3.4 04 0.08° N/A
Tier 2 2004° 0.125 N/A 1.7 0.2 0.08P N/A

California (mandated)

TLEV 1994 N/A 0.125 3.4 0.4 0.08d 0.015
LEV 1997 N/A 0.075 34 0.2 0.089 0.015
ULEV 1997 N/A 0.040 1.7 0.2 0.049 0.008
ZEV 2003 0 o€ 0® 08 0® 0®

National LEV Program (voluntary)

TLEV 2001 N/A 0.125 34 04  0.08d 0.015
LEV 2002 N/A 0.075 3.4 02  0.08d 0.015
ULEV 2003 N/A 0.040 1.7 02  0.049 0.008

2 Not applicable.
b Applies to all 49-state LDVs beginning in MY96.

© Need for these standards will be determined by EPA in 1999, They are not yet mandated.
Definition of usefu! life increased to 10 yr or 100,00 mi.

d Applies to diesel vehicles only; standards are for 10 yr or 100,000 mi.
¢ Emissions from vehicle itself.

California has defined still stricter vehicle emission standards to be phased in over
the next decade. The standards include formaldehyde and replace the non-methane
hydrocarbon (NMHC) standard with a non-methane organic gas (NMOG) standard
(which includes NMHC and several other organic gases). To meet a fleetwide standard
for NMOG, vehicle manufacturers must certify each of their vehicles in one of four
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emission categories: Transitional-Low-Emission Vehicles (TLEV), Low-Emission
Vehicles (LEV), Ultra-Low-Emission Vehicles (ULEV), or Zero-Emission Vehicles
(ZEV). A weighted average consisting of the emission standard for the category and the
share of each manufacturer’s California sales in that category will then be used to
determine if manufacturers are meeting the fleetwide NMOG standard.

The California Air Resources Board recently proposed the so-called “LEV II”
program (CARB 1997), which extends the already adopted TLEV, LEV, and ULEV
standards to 120,000 mi; tightens PM emission standards to 0.04 g/mi for TLEV and
0.01 for LEV and ULEYV (applicable at 120,000 mi); and adds a new vehicle category -
super-ultra-low-emission vehicle (SULEV). Applicable for 120,000 mi, the proposed
SULEV standards are 0.01 g/mi for NMOG, 1.0 for CO, 0.02 for NOy, and 0.01 for PM.

Recently, EPA adopted a national low-emission-vehicle (NLEV) program to
encourage the introduction of LEV types. Forty-five states and the District of Columbia
will be covered under this program. The NLEV program is voluntary, and vehicle
manufacturers can participate in lieu of complying with the individual requirements of
any state except California.2? The NLEV program begins in MY 2001 and is similar to
the California LEV program with one major exception: Zero Emission Vehicles (ZEVs)
are not required to be sold (EPA 1998).

It is generally believed that 3X vehicles will be subject to Tier 2 standards for VOC,
CO, and NOy and the ULEYV standard for PM. For this analysis, it was assumed that
RFG-fueled SIDI engines will meet Tier 2 standards, but no further emissions reductions
(e.g., LEV II standards) will occur. All other SIDI engines (fueled with methanol,
ethanol, CNG, LNG, and LPG) were assumed to at least meet Tier 2 standards. If an
alternative fuel offers inherently lower emissions than RFG, emission reductions were
assumed for that fuel. Table 4.2 presents the emission reductions assumed for the five
alternative SIDI fuels.

Recently, it has been proposed that CIDI 3X vehicles should be subject to a PM
standard of 0.01 g/mi, which is equivalent to the PM emission rate of conventional
gasoline SI vehicles. For this analysis, it was assumed that 3X vehicles with CIDI
engines will at least meet Tier 2 standards for NOy, CO, and VOC and current ULEV
standards (i.e., 0.04 g/mi) for PM. As with SIDI alternative fuels, CIDI alternative fuels
that offer inherently lower emissions were assumed to achieve further reductions relative
to RFD. Table 4.3 presents the emission standards that the four CIDI fuels were assumed
to meet. Note that the four fuels were assumed to produce no evaporative emissions since
all have very low Reid vapor pressure (RVP). RFD, B20, and F-T50 were assumed to

20 Twenty-three automakers that comprise nearly all of the U.S. LDV market have agreed to
participate in the NLEV program. New York, Massachusetts, Maine, and Vermont have
decided to pursue ZEV requirements (i.e., the California model) instead of participating in
NLEV.
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Table 4.2 Relative Emissions of Alternative SIDI Fuels

Percent Tier 2 RFG-Fueled SIDI Rate

Pollutant Methanol Ethanol CNG LNG LPG

VOC (exhaust) 55 55 15 15 75
VOC (evaporative) 100 100 0 0 0
Cco 60 60 40 40 60
NOy 80 80 60 60 90
PM (exhaust) 10 10 1 1 1
PM (brake and tire) 100 100 100 100 100
CHg? 85 65 1000 1000 100
N 2Ob 100 100 100 100 100

2 Gasoline vehicle CHy emissions = 0.074 g/mi.

b Gasoline vehicle NyO emissions = 0.005 g/mi.

Table 4.3 Emissions of Alternative CID! Fuels

Emissions (g/mi), by Fuel
Pollutant RFD® DME B20 F-T50

VOC (exhaust) 0.125 0.125 0.125 0.125
VOC (evaporative) 0 0 o] 0
CcO 1.7 1.7 1.7 1.7
NOx 0.2 0.2 0.2 0.2
PM (exhaust) 0.04 0.01 0.04 0.04
CH,? 0.008 0.008 0.008  0.008
N,OP 0.005  0.005 0.005 0.005

2 Based on GREET estimates for conventional diesel.

b Current California diesel has a sulfur content of about 150 ppm.
RFD was assumed to have a sulfur content of 100 ppm in
order to meet the 0.04 g/mi PM,, emission standard.

meet the current ULEV standard for PM. DME was assumed to meet the tighter LEV II
ULEYV Standard (0.01 g/mi), which is equivalent to that of an SIDI engine.

It is generally believed that FCVs (using Hj, methanol, or gasoline) will have
substantially lower emissions than either SIDI or CIDI engines. Table 4.4 presents the
emission assumptions used in this analysis. Note that entries are relative to Tier 2 RFG-
fueled vehicles.

4.2.2 Fuel Specifications

In this analysis, diesel fuel specifications were modified to replace the low sulfur
California diesel considered in Phase 1 with a lower sulfur, low aromatics




Table 4.4 Relative Emissions of Alternative FCV Fuels

Percent of Tier 2 RFG-Fueled SIDI Rate

Methanol? Gasoline?
Pollutant Hydrogen (Partial Oxidation) (Partial Oxidation)

VOC (exhaust) 0] 05 05
VOC (evaporative) 0 20P 504
CO 0 1 1
NOx 0 1 1
PM (exhaust) 0 0 0
PM (brake and tire) 100 100 100
CH,® 0 0 0
N0 0 0 0

2 Based on personal communication with Romesh Kumar of ANL.
b Smaller tank size for 3X vehicles helps reduce evaporative emissions.
¢ Gasoline vehicle CH,4 emissions = 0.074 g/mi.

9 Gasoline vehicle N3O emissions = 0.005 g/mi.

“reformulated” diesel (RFD). As with gasoline, all diesel was assumed to be
reformulated beyond 2000. Specifications for RFD, as well as all other fuels considered
in this study, are presented in Table 2.5.

As discussed in Section 2, several fuels that had not been included in the Phase 1
analysis were added to Phase 2. These fuels include a 20% blend of methyl soyate
(biodiesel) and conventional diesel (designated as B20), a 50% blend of Fischer-Tropsch
diesel and conventional diesel (designated as F-T50), CNG, LNG, and LPG.

4.2.3 Greenhouse Gas Emissions

Operational emissions. As stated above, gasoline-equivalent fuel use by
3X vehicles was calculated simply by assuming that all 3X vehicles meet the PNGV goal
(i.e., gasoline-equivalent rated fuel economy of 81 mpg for passenger cars and 63 mpg
for light trucks). CO, emissions from vehicle operations were then calculated by using a
carbon-balance approach (i.e., as a function of the physical quantity of the candidate fuel

consumed and its carbon content, less the carbon contained in combustion emissions of
VOC, CHy and CO).

As part of the Phase 2 analysis, calculations of GHG emissions were expanded to
include CH4 and N»O and to generate total GHG emissions (in CO; equivalents). As
with all other pollutants, operational emission rates for CHyq were assumed to be related
to fuel and engine type — CIDI, SIDI, or fuel cell. Operational emission rates for CHy

and N»O for each propulsion system-fuel combination were presented in the previous
three tables.
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Upstream emissions. Upstream emission rates can vary over time as feedstock
sources and production processes change. CO,, CHy, and N7O upstream emission rates
for each potential 3X fuel were obtained from GREET outputs for 2007 and 2030.
Together with rates for the intervening years, estimated by straight-line interpolation,
these values were applied to annual estimates of fuel use. For the most part, rates for
2030 are approximately 10% below 2007 values. Key exceptions are ethanol and
hydrogen, for which production was assumed to shift from current processes to more
advanced, and as yet unproved, processes (i.e., ethanol from biomass as opposed to cormn
and hydrogen from the electrolysis of water instead of from natural gas). For these fuels,
emission rates were assumed constant until introduction of the new process. During the
transition to the new process, emission rates were weighted by the share of total capacity
represented by each process (see Section 4.3.4).

4.2.4 Urban Emissions

To evaluate the relative damage (in terms of population exposure to criteria
pollutants) associated with alternative 3X power system/fuel technologies, the
IMPACTT files created for the high- and low-market-share scenarios of Phase 2 were
modified to estimate those portions of operational and upstream emissions likely to occur
within urban areas. For the estimate, urban vehicle sales, survival and utilization, and
urban upstream emission rates had to be estimated.

Both vehicles residing in urban areas (“urban vehicles”) and non-resident vehicles
being operated within urban areas (“non-urban vehicles™) can contribute to urban
operational emissions. According to the Nationwide Personal Transportation Survey
(NPTS), trips of 75 mi or less account for 82% of total VMT, and trips of 200 mi or less
account for 94% of total VMT (Hu 1993). Thus, it may be assumed that approximately
90% of the VMT (and associated emissions) in urban areas is attributable to urban
vehicles.?! Further, it may be assumed that the remaining VMT (and emissions) due to
the operation of nonurban vehicles on urban roads is more or less offset by VMT due to
the operation of urban vehicles in nonurban areas (or in other, nonresident urban areas).
Urban emissions due to vehicle operations may then be estimated as a function of the
share of new vehicle sales in urban areas and the survival, urban utilization, and urban
emission rates of those vehicles.

For this analysis, “urban” was defined as a metropolitan statistical area (MSA) with
a population of 250,000 or more, a definition consistent with the Energy Policy Act of
1992 (EPACT), and an “urban vehicle” was defined as a light-duty vehicle (LDV)
residing in such an MSA. According to the 1990 NPTS, “urban vehicles” comprise

21 Non-urban vehicles could further affect urban air quality if considerable numbers of them are
operated near urban area boundaries or atmospheric conditions transport their emissions into
urban areas. In the absence of detailed atmospheric modeling, however, it is assumed that this
possibility accounts for a negligible share of urban emissions.
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70.8% of the LDVs of all ages that households purchased new and 92.7% of the 1990-91
MY LDVs that households purchased new (FHWA 1992). Assuming that vehicles
purchased by businesses and other nonhousehold entities follow a similar pattern, it may
be assumed that approximately 70% of all the light-duty vehicles sold in the United
States remain “urban vehicles”.22

For this analysis, “urban” and “non-urban” vehicles were assumed to have the same
survival and emission rates. Utilization is more problematic. Conventional wisdom
suggests that “arban” vehicles may be driven fewer miles because travel destinations are
less distant than in rural areas. However, according to the 1990 NPTS, the reverse may
be true. “Urban” and “non-urban” automobiles have about the same annual utilization
(10,756 mifyr vs. 10,494 mi/yr), but urban light trucks may travel more miles than
nonurban light trucks (11,637 mi/yr vs. 10,766 mi/yr). This surprising pattern was
examined further by disaggregating NPTS data by vehicle age or vintage. As shown in
Table 4.5, age differences between the urban and nonurban vehicle populations account
for virtually all of the difference in light truck utilization (FHWA 1992). Only the newest
vehicles continue to show differences in utilization, and these differences may be due to
their use on longer trips. Thus, for this analysis, newer vehicles were assumed to travel a
slightly higher fraction of miles outside urban areas (to account for their use on longer
trips), a fraction that declines with vehicle age. For vehicles aged 0—4 yr, 10% of VMT
was assumed to occur outside urban areas; for

Table 4.5 Annual Utilization by Vehicle Type,
Location, and Age (VMT/vehicle)

Automobiles Light Trucks

Age
(yr) Urban Non-Urban Non-Urban Urban

01 8,294 8,396 8,938 9,885
2 13,517 13,575 14,256 15,237
3 13,312 13,527 14,586 14,285
4 12,634 12,670 12,197 11,975
5 11,692 12,063 13,661 13,103

6-10 10,953 10,864 12,314 12,498

11+ 8,000 7,572 7,313 8,687

Source: FHWA 1892.

22 A higher proportion of late-model LDVs may be “urban.” However, because some of these
vehicles are eventually resold to non-urban owners, a lower estimate of urban vehicle sales was
used in this analysis. Thus, results may be considered conservative estimates of urban vehicle
emissions. (For additional discussion, see Section 4.3.3.)
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those aged 5-9 yr, 5% of VMT was assumed to occur in non-urban areas; for those 10 yr
and older, all VMT was assumed to be urban.?3

By using these factors, the IMPACTT files created for the high- and low-market-
share scenarios were modified to create estimates of the urban vehicle population and the
VMT, energy use, and operational emissions of those vehicles under each of the two
scenarios. Urban upstream emissions were then added to these values. Urban upstream
emissions were calculated as a function of the GREET-estimated upstream urban
emissions rate for each pollutant and the IMPACTT estimate of total fuel use (urban and
non-urban) under each scenario.

4.3 Key Issues
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4.3.1 Utilization and Efficiency of 3X Vehicles

Both conventional and 3X vehicles were assumed to have the same utilization.
Because 3X vehicles have triple the fuel economy of conventional vehicles, their per-
mile operating cost will be considerably less than that of conventional vehicles operating
on the same fuel. This lower operating cost could increase vehicle utilization (as well as
energy use and emissions), much like the “rebound effect” that has been documented as a
result of CAFE-induced increases in fuel economy (Greene 1992). This analysis does not
address the effect of tripled fuel economy on operating cost because it is unclear whether
any reduction should be assumed. The PNGV goal is for “comparable” costs. On a
lifecycle basis, “comparable” may be achieved in many ways. Alternative fuels with
triple the GGE cost of gasoline could result in “comparable” fuel costs. Or, lower fuel
costs could offset higher vehicle costs, resulting in “comparable” lifecycle costs. Even
more likely is a combination of somewhat higher vehicle costs and GGE equivalent fuel
cost. Thus, tripling fuel economy does not necessarily suggest a reduction in operating
cost, which might then translate into increased vehicle utilization.

Both 3X and conventional vehicles were assumed to have the same percentage gap
between rated and on-road fuel economy. Because the PNGV goal is to triple the fuel
economy of conventional vehicles, it was assumed that the appropriate base should be
actual, not rated, values. Thus, 81 mpg was reduced to approximately 65 mpg for cars
(27 x 3 =81 x 0.8 = 64.8), and 63 mpg was reduced to approximately 50 mpg for light
trucks (21 X 3 =63 x 0.8 = 50.4).

4.3.2 Emission Standards and In-Use Emissions
For this analysis, all vehicles were assumed to achieve at least Tier 2 emission

standards by model year 2004. Thus, conventional vehicles meet Tier 2 standards, while
3X vehicles, depending on fuel and technology, achieve either Tier 2 or ULEV

23 These factors were applied to annual utilization which also declines with vehicle age.
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standards. Tables 4.1-4.4 contain the emission standards assumed for 3X vehicles using
SIDI and CIDI engines and fuel cells (by fuel type), as well as the emission rates
(relative to Tier 2 gasoline vehicles) for 3X vehicles using fuel cells and alternative
fuels. Note that the four CIDI engine fuels were assumed to meet the Tier 2 gasoline
standards of 0.2 g/mi NOy and 0.04 g/mi PM. Some type of aftertreatment will be
required to meet these standards, and deterioration in the performance of that technology
may be anticipated. Thus, it is assumed that NOy emissions from CIDI engines will be
comparable with those of SI engines over all vehicle ages, despite the (uncontrolled) CI
engine’s historically lower emissions deterioration.24

Because many of these vehicles have not been built, let alone been subject to
certification testing, assumptions about emission rates are speculative. Clearly, achieving
Tier 2 and ULEV standards will be a challenge for vehicle manufacturers. Because one
of the goals of the PNGYV is to achieve emission levels comparable with those of the
conventional vehicles that are being replaced, 3X vehicles were assumed to also achieve
Tier 2 and ULEV standards. Unless noted to the contrary, emissions of criteria pollutants
by SIDI and CIDI engines were assumed to deteriorate over time at their respective
historical deterioration rates as predicted by EPA’s MOBILESb model. Even this is
somewhat speculative, however, because EPA is revising the MOBILE model. On the
basis of unofficial statements, it appears that the rates at which gasoline vehicles will
deteriorate will be considerably lower in the next version of the model. If such is the
case, this lower rate of deterioration would reduce the emission benefits of 3X vehicles,
particularly those operating on fuel cells or using fuels other than gasoline.

4.3.3 Urban Emissions

A number of simplifying assumptions were needed to permit estimation of the
operational portion of urban emissions. Several of these are subject to uncertainty. First,
are 70% of all household vehicles sold to urban households, or is it over 90%?
According to NPTS, 93% of the model year 1990-91 vehicles that were bought new by
households during the timeframe in which NPTS was administered went to urban
households (FHWA 1992). Because some of these vehicles may ultimately be resold to
nonurban households, it is safe to assume that 93% is a high estimate of vehicles that
spend their entire lifetime within urban areas. But, the question is, how high? This
analysis used 70%, since it is the share of all vehicles (of all vintages) originally bought
new that are currently in urban households. However, if urban households have a lower
propensity to retain vehicles purchased new, 70% may be a low estimate.

Second, it is unclear whether the approximately 30% of vehicles assumed to be
nonurban generate a significant amount of urban VMT. By using data from NPTS, it
appears that approximately 17% of total VMT comes from trips to MSAs with a
population of 1,000,000 or more by vehicles from outside MSAs or from MSAs with a

24 If historical CI emissions deterioration rates were assumed, diesel-like fuels would emit less
NOx than gasoline over a vehicle’s lifetime.
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population less than 1,000,000 (Hu 1993). Because this study’s definition of urban
includes MSAs with a population of 250,000 or more, 17% is probably a high estimate of
urban VMT by nonurban vehicles. But zero is probably a low estimate.

Third, urban vehicles may contribute more nonurban VMT than assumed. If trips of
75 mi or more account for 18% of total VMT (Hu 1993), one might reasonably assume
that no more than 82% of urban vehicle VMT should occur within urban areas. For this
analysis, a considerably larger share (90% for newer vehicles, increasing to 100% for
vehicles 10 years or older) is assumed. Presumably, the higher share assumed for urban
vehicles offsets the lower share assumed for nonurban vehicles.

Fourth, the urban share of upstream emissions is uncertain. Shares were estimated
by using the ratio of fuel production to fuel consumption within an urban area. High
ratios corresponded to net exporters of energy; low ratios corresponded to net importers.
Upstream emissions (and energy use) were then allocated between urban and nonurban
areas. In many cases, sparse data necessitated the use of default values that are subject to
some uncertainty.

Section 4.5 focuses on urban emission results for the various 3X propulsion
system/fuel alternatives. Urban emissions of criteria pollutants are clearly more
damaging and of greater interest from a nonattainment perspective. Total emissions of
greenhouse gases are also presented in Section 4.5.

4.3.4 Transition in Upstream Production Processes

In the Phase 1 analysis, the transitions from corn to biomass ethanol and from
natural gas to solar hydrogen were each assumed to occur over a five-year period, from
2015 to 2020 for ethanol and from 2020 to 2025 for hydrogen. A straight-line
interpolation procedure was used to weight the upstream energy and emissions rates
associated with each production process in order to estimate total upstream energy and
emissions. For the Phase 2 analysis, the 5-yr weighting procedure was replaced with
annual estimates of production shares from each process, beginning in the year when the
new process was introduced and continuing through 2030. The revised procedure is
consistent with the capital cost analysis, which incorporates revised assumptions about
investment decisions and plant turnover. Although the cost analysis still assumes a five-
year interval for the transition, added capacity, not total production, is assumed to shift to
the new production process over that five-year interval. Table 4.6 shows the distribution
of both added capacity and production shares by production process for each year from
2007 to 2030. Clearly, the most significant change from the Phase 1 analysis is that solar
hydrogen falls far short of full market penetration, achieving only 61% penetration under

the high-market-share scenario vs. 76% penetration under the low-market-share scenario
by 2030.
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Table 4.6 Transition from Natural Gas to Solar Hydrogen and from Corn to
Biomass Ethanol

Hydrogen Ethanol
Added Capacity Total Production Added Capacity Total Production
(%) (% solar) (%) (% cellulosic)
High Mkt Low Mkt High Mkt Low Mkt

Year NG Solar Share Share Corn Cellulosic Share Share
2007 100 0 0 100 0 0 0
2008 100 0 0 100 0 0 0
2009 100 0 0 100 0 0 0
2010 100 0 0 100 0 0 0
2011 100 0 0 100 0 0 0
2012 100 0 0 100 0 0 0
2013 100 0 0 0 100 0 0 0
2014 100 0 0 0 100 0 0 0
2015 100 0 0 0 100 0 0 0
2016 100 0 0 0 80 20 0 0
2017 100 0 0 0 60 40 0 0
2018 100 0 0 0 40 60 27 6
2019 100 0 0 0 20 80 58 48
2020 100 0 0 0 0 100 74 68
2021t 80 20 4 3 0 100 79 75
2022 60 40 10 10 0 100 83 80
2023 40 60 17 16 0 100 86 84
2024 20 80 26 26 0 100 88 87
2025 0 100 35 38 0 100 90 90
2026 0 100 44 49 0 100 91 92
2027 0 100 50 59 0 100 92 93
2028 0 100 55 66 0 100 93 94
2029 0 100 58 72 0 100 a3 95
2030 0 100 61 76 0 100 94 96

4.4 Energy and Emissions Estimates

The IMPACTT setup used for this analysis included reference scenario vehicles and
3X vehicles with any of 13 combinations of future propulsion system/fuel technologies.
Reference scenario vehicles incorporated RFG-fueled conventional SI engines; 3X
vehicles could be powered by the following:

® RFG-fueled SIDI engines,

® Methanol-fueled SIDI engines,

77




78

¢ FEthanol-fueled SIDI engines,
® CNG-fueled SIDI engines,
® ].NG-fueled SIDI engines,
® [ PG-fueled SIDI engines,
® RFD-fueled CIDI engines,
® F-T50-fueled CIDI engines,
® B20-fueled CIDI engines,

® DME-fueled CIDI engines,
® RFG fuel cells,

® Methanol fuel cells, or

® Hydrogen fuel cells.

For each of these propulsion system/fuel technologies, IMPACTT calculations
proceeded in three steps. First, using the reference scenario forecasts of vehicle sales and
3X vehicle market share assumptions described in Sections 2.1 and 2.2, stocks of
conventional and 3X vehicles were determined for each year between market
introduction (2007 in the high-market-share scenario and 2013 in the low-market-share
scenario) and 2030. (Shares of 3X vehicles [out of total LDV stocks]) under the two
market penetration scenarios are shown in Figure 2.5). Second, energy use (in gasoline
gallon equivalents, or GGEs) was calculated for conventional and 3X vehicles by
scenario, year, and vehicle type (auto vs. light truck). Differences in total fuel use
between the reference and market share scenarios were then used to calculate fuel
savings attributable to fuel efficiency and fuel substitution by 3X vehicles. Third,
emissions of criteria pollutants (i.e., CO, VOC, NOy, PM1q, and SOy) and greenhouse
gases (GHGs) were computed by scenario, year, and vehicle type as a function of either
fuel use or a combination of VMT and age-based emission factors.25 Emissions were
calculated for conventional vehicles and each of the 13 propulsion system/fuel
alternatives under the two market-share scenarios.

‘25 Operational emissions of NOy, CO, VOC, and PM; were computed as a function of VMT and

emission rates by vehicle type (auto or light truck) and age (O to over 20 years), which varied by
calendar year; upstream emissions of all pollutants and operational emissions of SOy and CO»
were computed as a function of the quantity of fuel used and its composition (i.e., sulfur or
carbon content for SO, and CO,, which varied by calendar year or as the result of switching
from one fuel type to another [e.g., from RFG to methanol]). Fuel specifications are provided in
Table 2.5.
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As compared with the low-market-share scenario, the high-market-share scenario
has nearly three times as many 3X vehicles on the road by 2030. These vehicles produce
similar increases in 3X VMT and fuel use.

4.4.1 Emissions of Criteria Pollutants

Figures 4.4-4.9 display percent changes in urban emissions of the five criteria
pollutants for each of the above propulsion system/fuel combinations. Each figure
depicts results for a single pollutant as a series of curves showing annual percentage
increases or decreases from the reference scenario forecast for each technology/fuel
combination. Curves that are all but indistinguishable are combined to aid interpretation.
Upstream and operational emissions are not shown separately (as they were in the
Phase 1 report) because virtually all urban emissions are due to vehicle operation.
Readers interested in further detail are urged to consult Appendixes A and B, which
contain estimates of upstream, operational, and total emissions by propulsion system/fuel
combination and scenario.

As in the Phase 1 analysis, emissions estimates under both market share scenarios
show similar results. However, the patterns are much more striking under the high-
market-share scenario (note the different y-axis scales), which, by definition, is a more
extreme example of possible market penetration. Thus, the following discussion tends to
focus on results from that scenario. Each technology/fuel alternative considered in the
analysis was examined in the context of a scenario that contains a significant portion of
conventional, as well as 3X, vehicles. Thus, emissions were computed for a combination
of conventional and 3X technologies, and results are less striking than would be the case
for 3X technologies alone.

Nitrogen Oxides (NOy). Figure 4.4 illustrates the impact of alternative 3X
propulsion system/fuel combinations on urban NOy emissions under the two scenarios.
Because it was assumed that the four CIDI fuels would meet equivalent Tier 2 emission
standards, RFD, DME, F-T50, and B20 all fall within a narrow band and are essentially
equivalent to RFG, MeOH, EtOH, LPG, and the gaseous-fueled alternatives. Methanol
and gasoline fuel cells offer the largest reduction in urban NOy emissions — 9% under
the low-market-share scenario and 35% under the high-market-share scenario. Hydrogen
fuel cells achieve somewhat lower NOy reduction (approximately 8% in the low-market-
share scenario vs. 32% in the high-market-share scenario) because of their relatively
higher upstream emissions.

Carbon Monoxide (CO). Figure 4.5 shows reductions in CO emissions under the
high- and low-market-share scenarios. Again, reductions range up to about 8% under the
low-market-share scenario and 35% under the high-market-share scenario, with fuel cells
achieving the highest reductions and SIDI engines on any of six fuels achieving the
lowest. Between these two clusters, however, the position of the other propulsion
system/fuel alternatives differs markedly from NOy results. Given the CI engine’s proven
record of relatively low CO emissions, it is not surprising that diesel-like fuels (RFD,
DME, F-T50, B20) have the second-best CO reduction.
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Figure 4.4 Changes in Fuel-Cycle Urban NO, Emissions by 3X Technology/Fuel Alternative
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Figure 4.6 Changes in Fuel-Cycle Urban VOC Emissions by 3X Technology/Fuel Alternative
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Volatile Organic Compounds (VOCs). For VOC, reductions from reference
scenario emissions range up to approximately 11% in the low-market-share scenario and
37% in the high-market-share scenario (see Figure 4.6). Hydrogen fuel cells are the clear
leader from a VOC reduction standpoint, with methanol fuel cells a close second and
gasoline fuel cells third. CIDI engines on RFD, DME F-T50, or B20 and SIDI engines on
LPG, CNG, or LNG achieve almost half the reduction of hydrogen fuel cells.

Sulfur Oxides (SOy). Unlike the other criteria pollutants, urban SOy emissions are
closely related to the volume of fuel used. Thus, relative to the reference scenario, all
propulsion system/fuel alternatives reduce urban SO4 emissions because of their tripled
fuel efficiency (Figure 4.7). Hydrogen fuel cells, LPG, CNG, ethanol, and DME achieve
the biggest reductions, but urban SO represents a very small share (on the order of 7—
13%) of the total SOy attributable to light-duty vehicles. Most SOy emissions come from
upstream fuel processing, which tends to be outside urban areas.

Particulate Matter (PMjg). Unlike total PM;q emissions, nearly half of which
occur upstream, urban PM g emissions are dominated by vehicle operations. Thus, with
the exception of DME, diesel-like fuels increase PM g emissions (Figure 4.8). Excluding
RFG, DME, and LNG, which have little effect on PM, all the other alternatives decrease
PM o emissions by approximately 15% under the high-market-share scenario (6% under
the low scenario). Note that the increase for diesel-like fuels occurs despite the
assumption of a “Tier 2 equivalent” exhaust emission standard of 0.04 g/mi (as compared
with the current standard of 0.08 g/mi at 50,000 mi). DME, which produces virtually no
particulate matter from fuel combustion, was assumed to achieve the proposed LEV II
ULEV standard (including 0.01g/mi PMg). Given that assumption, it comes as no
surprise that DME and RFG have comparable urban PM1¢ emissions. For LNG, which
produces similar urban PM emissions, upstream processes account for much of urban
PM.

Note also that ethanol is not markedly different from the other SIDI fuel alternatives
insofar as urban PM; emissions are concerned. In Phase 1, however, ethanol accounted
for the largest increase in total PMg emissions. Virtually all of that increase was due to
agricultural processes, making ethanol relatively benign from an urban perspective.

4.4.2 Greenhouse Gas Emissions

Figure 4.12 displays changes in total greenhouse gas (GHG) emissions in the same
format as that used for the criteria pollutant graphs. Note that because CO, comprises the
bulk of GHGs and all propulsion system/fuel alternatives share the same fuel efficiency,
emission reductions from non-renewable fuels are clustered. Under the low-market-share
scenario, GHG reductions range from 7 to 14%; under the high-market-share scenario,
the range is from 23 to 45%. Chief among the low-GHG alternatives are ethanol-fueled
SIDI engines and hydrogen fuel cells, both of which generate no CO; from vehicle
operations. Hydrogen fuel-cell vehicles generate no CO; because no carbon is contained
in the fuel. Ethanol-fueled SIDI engines are assumed to generate no CO; because the
carbon in ethanol comes from carbon in the atmosphere via photosynthesis. When
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Figure 4.9 Changes in Fuel-Cycle GHG Emissions by 3X Technology/Fuel Alternative
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combined with the conventional vehicles (and their GHG emissions) in the high-market-
share scenario, these low-GHG alternatives achieve overall reductions (from all light-
duty vehicles, both 3X and conventional) of 46% (for ethanol) and 33% (for hydrogen).

Note also that shifts from current to advanced production technologies cause some
GHG reduction curves to shift position relative to the others. Specifically, hydrogen
shifts from a position at or near the bottom of the pack to second place by 2025. Ethanol,
which is also assumed to shift to a more advanced production technology, has a change
in slope, but it is less obvious relative to the other alternatives. After ethanol and
hydrogen, the only two renewable fuels examined, LPG and the gaseous fuels, achieve
the next-best reduction in GHGs. However, they are only marginally better than the other
alternatives. ‘

As compared with Phase 1, Phase 2 estimates of CO, emissions reduction are
somewhat lower. This result is primarily due to a reduction in projected fuel demand
under the reference scenario?6 and a longer transition period from natural gas to solar
hydrogen and from corn to cellulosic ethanol.

4.4.3 Energy Estimates

Figures 4.10-12 provide estimates of changes in total energy, fossil energy, and
petroleum use for the low- and high-market-share scenarios relative to the reference
scenario. Again, formats are identical to the above graphs.

Total Energy. As shown in Figure 4.10, total energy use by light-duty vehicles
declines by 18-29% under the high-market-share scenario (5-9% under the low-market-
share scenarto). By definition, all fuel/technology alternatives achieve 3X fuel economy.
Thus, operational energy use declines by 27% in 2030 for all alternatives under the high-
market-share scenario (15% in the low-market-share scenario), and the upstream energy
requirements of the various fuels account for all the variation in total energy use among
the alternatives.

Fossil Fuels. Reductions in fossil energy use by the 13 fuel/technology alternatives
under the reference scenario and the high- and low-market-share scenarios are shown in
Figure 4.11. The ethanol- and hydrogen-fueled alternatives, both largely nonfossil fuels
in 2030, achieve the largest reductions in fossil fuel use in that year (approximately 45%
and 38%, respectively, under the high-market-share scenario vs. 11% and 12% under the
low-market-share scenario), followed by the biodiesel blend (B20) and RFD, LPG, and
CNG, which achieve reductions of nearly 30% under the high-market-share scenario vs.
9% under the low-market-share scenario. The transition from fossil to nonfossil
feedstocks is particularly evident in the hydrogen curve, as is a flattening out in all

26 The lower vehicle sales and fuel economy estimates in AEO-97 result in a 7% reduction in fuel
use under the reference scenario as compared with the Phase 1 estimate, which was based on
AEO-96 inputs.
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Figure 4.10 Changes in Fuel-Cycle Total Energy Use by 3X Technology/Fuel Alternative
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curves for the high-market-share scenario as compared with the low-market-share
scenario.

All (completely) fossil-fueled alternatives consume 11.1 quads of fossil fuels
because of vehicle operation in 2030 under the high-market-share scenario vs.
10.8 quads for B20, 20% of which is nonfossil, and 8.2 quads for the nonfossil
alternatives. Again, upstream energy use accounts for the variation in fossil energy use
(for the entire fuel cycle) within the two groups of fossil- vs. nonfossil-fueled
alternatives.

Petroleum. Several of the fuel/technology alternatives consume nonpetroleum fuels.
To the extent that such fuels are derived from fossil sources (e.g., DME or methanol
from natural gas), they offer little reduction in greenhouse gas emissions, despite
potentially dramatic reductions in petroleum use. Figure 4.12 displays petroleum use by
technology/fuel alternative for the reference and low- and high-market-share scenarios.
Clearly, the alternatives cluster into three groups: largely petroleum fuels (i.e., RFG,
RFD and B20), “part petroleum” fuels (i.e., F-T50 and LPG), and largely nonpetroleum
fuels (i.e., hydrogen, methanol, ethanol, DME, CNG, and LNG). By 2030, the
nonpetroleum alternatives achieve an approximately 45% reduction in total petroleum
use under the high scenario (14% under the low-market-share scenario) relative to the
reference scenario. The “part petroleum” alternatives (i.e., LPG and F-T50) achieve the
next-best reduction — approximately 35% under the high-market-share scenario and
11% under the low-market-share scenario.
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In this study, 11 fuels (RFG, RFD, DME, methanol, ethanol, LPG, CNG, LNG,
F-T50, B20, and hydrogen) that are candidates for use in 3X vehicles were evaluated in
three power system applications (SIDI engine, CIDI engine, or fuel cell) for a total of
13 propulsion system/fuel combinations. Two scenarios depicting alternative levels of
3X market penetration of light-duty-vehicle sales were developed and used to estimate
the fuel production and distribution infrastructure needed to satisfy the fuel demands of
3X vehicles and the fuel-cycle energy and emissions impacts of the 13 potential
propulsion system/fuel combinations. Capital needs and impacts were generated for each
year from market introduction (2007 in the high-market-share scenario and 2013 in the
low-market-share scenario) to 2030 for each of the propulsion system/fuel combinations.

As expected, cumulative capital needs were found to vary by technology and
scenario. Of particular interest, though, is that supplying the low-market-share scenario’s
gasoline-equivalent demand requires capital investment of less than $50 billion for all
fuels except hydrogen, which is estimated to require a total cumulative investment of
$128-146 billion. By contrast, production and distribution facilities with gasoline-
equivalent capacity of 1.6 MMBD (which is equivalent to 3X fuel demand in the high-
market-share scenario) requires cumulative capital investments of $51 billion for LNG,
$88 billion for ethanol, $101 billion for methanol, $123—-164 billion for CNG,
$162 billion for DME, and $478-559 billion for hydrogen. Although these substantial
capital requirements are spread over many years, their sheer magnitude could pose a
challenge to the widespread introduction of 3X vehicles.

Petroleum displacement will occur if substantial numbers of 3X vehicles enter the
fleet, and adverse impacts on refineries are inevitable. However, the commitment of time
and resources to 3X technology development should provide ample economic signals and
sufficient lead time for refinery operators to adjust their business to accommodate
different fuel demands, including, perhaps, lower gasoline demand. Such an economic
restructuring would be considerably less severe than the industry consolidations that
occurred during the 1970s and 1980s.

Energy and emissions impacts of 3X vehicles are highly dependent on market
penetration and thus differ dramatically between the two scenarios examined in this
study. Because impacts are relatively small under the low-market-share scenario, most of
the discussion presented here focused on the more significant results obtained for the
high-market-share scenario. For all 3X propulsion system/fuel technologies, total energy
and fossil fue] use by U.S. light-duty vehicles decline significantly under the high-
market-share scenario relative to reference scenario estimates for 2030. Fuel savings
occur as a result of fuel-efficiency improvements, which apply to all 3X technologies and
reduce LDV energy use by more than 25%, as well as a result of fuel substitution, which
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applies to the nonpetroleum-fueled alternatives studied. Together, the two effects reduce
LDV petroleum use in 2030 by as much as 45% relative to the reference scenario. GHG
emissions follow a similar pattern. Total GHG emissions decline by 25-30% with most
of the propulsion system/fuel alternatives. For those using renewable fuels (i.e., ethanol
from biomass and hydrogen from solar energy), GHG emissions drop by 33% (hydrogen)
and 45% (ethanol) relative to the level estimated for the reference scenario.

Among the five criteria pollutants, urban NOy emissions decline slightly for 3X
vehicles using CIDI and SIDI engines and drop substantially for fuel-cell vehicles
(FCVs). Urban CO emissions decline for CIDI and FCV alternatives, while VOC
emissions drop significantly for all alternatives except RFG-, MeOH- and EtOH-fueled
SIDI engines. With the exception of CIDI engines using RFD, F-T50, or B20 (which
increase urban PMj( emissions by over 30% in the high scenario), all propulsion
system/fuel alternatives reduce urban PM; emissions. Reductions are approximately
15-20% for fuel cells and methanol ethanol-, CNG-, or LPG-fueled SIDI engines (RFG-
and LNG-fueled SIDI engines and DME-fueled CIDI engines have only very slight
reductions). Although urban SOy emissions declined for all of the alternatives, SOy
emissions resulting from the use of LNG were higher than those resulting from the use of
hydrogen, LPG, and CNG.

Table 5.1 qualitatively summarizes impacts of the 13 alternatives on capital
requirements and on energy use and emissions relative to the reference scenario. The
table clearly shows the trade-off between costs and benefits. For example, while
hydrogen FCVs have the greatest incremental capital needs, they offer the largest energy
and emissions benefits. On the basis of the cost and benefit changes shown, methanol
and gasoline FCVs appear to have particularly promising benefits-to-costs ratios. As
stated in the beginning of this report, all 3X technologies were assumed to become an
engineering reality. This is speculative, particularly for some less mature technologies,
such as fuel cells and DME fuel. By its very nature, the assumption of technological
readiness should be a subject of continued reexamination.

The air quality implications of these emissions results should be interpreted
cautiously. Changes in emissions of the five criteria pollutants (as presented in
Table 5.1) do not necessarily translate into similar changes in air quality, simply because
emissions from different fuels and upstream fuel-production activities occur in different
locations and at different times and are dependent on atmospheric processes. Generally
speaking, upstream emissions occur outside urban areas, while vehicular emissions occur
within urban areas. Because of high population exposure (especially where mortality
effects exist), emissions in urban areas generate far greater damage than those outside
urban areas. That is why urban emissions have been estimated in this analysis. However,
as discussed in Section 4.3.3, those estimates are based on broad, categorical data that
may not be representative of all urban areas and that do not take into account the effects
of varying local climatic conditions. Moreover, because methanol, DME, and much of
LPG were assumed to be produced in foreign countries, some of the emissions from their
production are not included in the estimates shown here.

93




A

Table 5.1 Impacts of Propulsion System/Fuel Alternatives for 3X Vehicles Relative to the Reference
Scenario

Parameter RFG?® MeOH? EtOH® LPG® CNG® LNG®* RFD® DME® F-T50* B20®* GFCV® MFCV® HFCV?

Cost of fuel ov - - - - - 0 - - 0 0 - -
production
Cost of fuel 0 - - - - - 0 - 0 0 0 - ---
distribution
Total energy use  +++ ++ + 4 +++ +++ F++ ++ ++ -+ +++ ++ +
Fossil energy use ++ ++ +++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++
Petroleum use + o +++ ++ +++ + +++ ++ + + 4+ +++
GHG emissions ++ ++ 4+ ++ ++ ++ ++ ++ +4+ ++ ++ ++ +++
VOC emissions® 0 0 0 + + + + + + + ++ PR e
CO emissions® o 0 0 0 0 0 ++ ++ ++ +++ 4 4+
NOy emissions® 0 o] 0 0 0 0 0 0 0 0 4 +++ 4
PM1g emissions® 0 ++ ++ ++ ++ 0 - 0 - -- ++ ++ ++
SO, emissions® + +++ +++ +++ +++ + + +4+ ++ + + 4+ 444
3 RFG: reformulated gasoline DME:  dimethyl ether
MeOH: methanol F-T50: 50% Fischer-Tropsch diesel and 50% conventional diesel
EtOH: ethanol HFCV: hydrogen fuel-cell vehicles
LPG: liquefied petroleum gas B20: 20% biodiesel and 80% conventional diesel
CNG: compressed natural gas GFCV:  gasoline fuel-cell vehicles
LNG: liquefied natural gas MFCV: methanol fuel-cell vehicles
RFD: reformulated diesel
b Key:
o no. change +: alittle better
- alittle worse ++: better
T worse +++: best
-~ worst

¢ Urban emissions

As shown in Table 5.1, urban PMq emissions from ethanol-fueled 3X vehicles are
less than those from most of the alternatives examined. In marked contrast, the Phase 1
results did not disaggregate criteria emissions into urban and nonurban components.
PM o emissions from ethanol occur largely upstream (from farming and ethanol
production) and outside urban areas, while PM g emissions from the diesel-like fuels
(RFD, F-T50 and B20) occur during vehicle operation, most of which is inside urban
areas. Beyond the qualitative comparison of totals shown in Table 5.1, increased urban
PM, emissions from RFD and, to a lesser extent, from F-T50 and B20 may also produce
worse health effects because diesel PMjg emissions, much of which is fine particulate
matter of 2.5 um or less (PM3 s5), may have much greater damage per unit than ethanol
PM g emissions, which tend to be in the 2.5~10 um range and to be removed from urban
populations. Full assessment of the damage caused by emissions from each fuel requires
air quality modeling and risk assessment beyond the scope of this analysis.
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Upstream Emissions of SO, for the Base Case and for Each PNGV Technology/Fuel Combination (1 0® tonnes)

Base Case CV+RFG CV+MeOH CV+EtOH CV+RFD CV+DME CV+HFCV CV+MFCV CV+GFC CV+FID/RFD CV4Bio/RFD CV+LPG CV+CNG CV+LNG
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Upstream Emissions of PM,, for the Base Case and for Each PNGV Technology/Fuel Combination (1 0® tonnes)
Base Case CV+RFG CV+MeOH CV+EtOH CV4+RFD CV+DME CV+HFCV CV+MFCV CV+GFC CV4+FTD/RFD CV+Bio/RFD CV+LPG CV+CNG CV+LNG
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Appendix B
Annual Results of Fuel-Cycle

Energy and Emissions Analysis:
High-Market-Share Scenario
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