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ABSTRACT

Automatic differentiation is a tedhnique for computing derivatives acairately and
efficiently with minimal human effort. We employed this technique to generate derivative
information of FCAP2 (2-D) and FCAP3 (3-D) programs that simulate the parasitic
effeds of interconneds and devices. This derivative information is used in the statistical
modeling of worst-case interconned delays and on-chip crosdaks. The ADIC
(Automeatic Differentiation in C) tool generated new versions of FCAP2 and FCAP3
programs that compute both the original results and the derivative information. Given the
ANSI C source code for the function, ADIC generates new code that computes
derivatives of the model output with resped to the inpu parameters. We report on the
use of automatic differentiation and divided difference gproadches for computing
derivatives for FCAP3 programs. The results show that ADIC-generated code mmputes
derivatives more acarately, more robustly, and faster than the divided difference
approach.



1 Introduction

As the geometry of VLSI/ULSI chips shrinks, the parasitic effeds of interconneds
become very important. The resulting interconned delay can dominate the aitical path
delay of the circuits (which in turn determines the operating frequency of the dips).
Because of processvariations, the aitical path delay varies with the set of interconnects
and devices. Thus, we neal acairate models of the sensitivities of the delay with resped
to these interconneds and devices in order to determine the worst-case behaviors. For this
purpose, the modeling of 3-sigma delays is more desirable than determining the
traditional skew-corner worst cases. Since achip has millions of interconneds, a fast
method is necessary to generate statistical-based worst case modeling of interconneds
and devices.

FCAP2 and FCAP3 (Fast Capacitance Extraction 2-D and 3D simulators,
respedively) [9] have been developed at Hewlett Padkard Laboratory to sudy parasitic
eledrical effects of interconnects and devices. These a@des are based on the finite-
difference method. Given a set of interconned geometry and hias conditions, the mdes
can, for example, compute the cgacitance among conducting wires. The statistical
modeling of interconnect methodology relies on acarate derivatives of the FCAP-
generated results. Spedficdly, we ae interested in computing the derivatives of the
output variables (such as the cgacitance between the wires) with resped to input
variables (such as the spacing between the wires on the same or different layers). A
single run of on-chip statistical modeling takes on the order of a week on a fast
workstation, and most of thistime is ent in computing the derivatives.

The traditional approach to obtaining cerivatives is to estimate them by using
divided difference schemes. For example, with central divided diff erences,
f'(x) = (f(x + AX) - f(x - AX)) / 2Ax.

The alvantage of this approad is that the function (in this case, the simulator) can be
treated as a black box. The disadvantage is that the time required to compute derivatives
grows linealy with the number of independent variables, and the aceciracy of derivatives
may be compromised severely as aresult of truncaion and cancellation errors[16].

Instead of approximating derivatives by using divided differences, we can use
hand coding or symbolic differentiation. These techniques, however, are generally not
feasible for large wdes such as the FCAP programs. Recently, the aitomatic
differentiation technique has been gaining popularity becaise of its ability to produce
acarate derivatives for general codes in an automated fashion. Several tools that
incorporate atomatic differentiation tedniques have been developed that take a
computer program comprising the function to be differentiated, such as FCAP2/3, and
generate anew program that evaluates the derivative of the function with resped to the
specified independent variables, in addition to computing the original function. No limits
are imposed on the length or the complexity of the program. Hence, general techniques
that rely on the output of computer simulation models, such as optimal design and
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sensitivity or reliability analysis, can all benefit from using automatic differentiation. Seg
for example, thework in[4, 6, 8].

In this paper, we describe how we gplied our automatic differentiation tool,
called ADIC (Automatic Differentiation in C), to generate derivative ades for FCAP2
and FCAP3 programs. We also present runtime performance results of the derivative
code for FCAP3. The results $iow that ADIC-generated code computes derivatives more
acarately and up to twice @ fast as the divided-difference methodology. We also
describe our postoptimization steps that have improved the performance by a fador of
two, on the average, over the straight ADIC-generated code.

2 The ADIC Automatic Differentiation Tool

In this sedion, we briefly review automatic differentiation techniques and describe our
tool that implements the techniques. Every function, no matter how complicated, is
executed on a computer as a (potentially very long) sequence of elementary operations
(addition, multiplication, etc.) and elementary functions (sine, cosine, etc.). By applying
the dhain rule of differential caculus over and over again to the composition of those
elementary operations, one can compute the derivative information exadly (up to the
machine precision) and in a cmpletely mechanica fashion [17].

We illustrate the ideawith a trivial example. Assume afunctionf: x O R" 0 y [
R™ and that we wish to compute the derivative of y with resped to x. Here, x is called an
independent variable and y the dependent variable.
a=x[1] +x[2] 1
yl0] = a/x[2] (2)

By means of the dain rule, derivatives can be propagated forward in a mechanicd
fashion. Let us denote the derivatives of a variable t with resped to a dosen set of
independent variables by [7t. Then the statement (1) implies

Oa =0x[1] + Ox[2],

and the dhain rule, applied to the statement (2), yields
_ o] M O]
OV[0] =—Z——=xHa+—=—-=x0X2],
y{O] o N2 X2]

which evaluates to

Oy[0] = 1.O/X[2] x Oa+ (-ax[2] x x[2])) x Ox[2].
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This mode of differentiation, where the derivatives are maintained with resped to
the independent variables, is called the forward mode of automatic differentiation:
derivatives are aceimulated in the same order as the original exeaution order. The best-
known alternative to the forward mode is the reverse mode, which maintains derivatives
of intermediate values with resped to the final results and is a discrete analog of the
adjoint: derivatives are acamulated in the reverse order of program exeaution. This
mode is attractive for the computation of derivatives of few dependent variables with
resped to many independent variables, but requires extensive runtime tradng to store or
recompute intermediate quantities that are required in the badkward pass. Becaise of the
asociativity of the dhain rule of differential calculus, many other ways of computing
derivatives are possible. Eadh way may differ significantly in complexity, with resped
to both floating-point operations and memory, depending on the @mde. These isdles are
discussed in some of the mntributions in the proceadings edited by Griewank and Corliss
[18] and Berz et a. [1]. Derivative acaracy is a built-in fedure of automatic
differentiation although in some caes cae must be taken to distinguish between the
mathematically derived continuous derivatives and the ones defined by the discretized
algorithm; see, for example, Eberhard and Bischof [14].

Several tools have been developed to handle the automatic diff erentiation process
They include ADIFOR [2,3], ODYSSEE [21], and ADOL-F [22] for Fortran programs
and ADOL-C [19] and ADIC [7] for C programs. For an up-to-date acount, realers are
referred to the documentation available on the World Wide Web under URL
http://www.mcs.anl.gov/autodiff/adtools/.

In our work, we employed the ADIC (Automatic Differentiation in C) tool. Given
an ANSI C routine or a colledion of routines describing a function, ADIC uses a source-
to-source program transformation tedhnique to produce anew, portable C code that
computes derivatives of the output variables with resped to any independent variables.
ADIC hasthe following feaures:

» Ease of Use: The user supplies the set of ANSI C source files to be differentiated.
ADIC then produces a new ANSI C code that computes first-order derivatives with
resped to the specified independent variables. After specifying independent variables
in a processtypicdly referred to as “derivative seeding” (see[3,7]), the user invokes
the derivative ade. ADIC also alows the user to guide the derivative generation
processhby specifying problem- and domain-spedfic knowledge in an optional control
script.

* Generality and Portability: ADIC provides AD functionality for all ANSI C
constructs, including, for example, subroutine and function calls, structures, and
pointers. The generated code is generally portable acoss different platforms and
compilers.

* Extensbility: AD tednology is gill in its infancy. The development of better
algorithms for exploiting chain rule associativity and their incorporation into AD
tools promise significant improvement in the performance of generated derivative
codes. ADIC incorporates a component architecure called AIF (AD InterfaceForm)
that simplifies implementation of AD algorithms and enables sharing acossdifferent
language front-ends [7].
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3 Differentiated Models: FCAP2/FCAP3

The development of the FCAP2/FCAP3 codes was garted at HP Lab in the 198%. These
codes have served many purposes in simulating cgpadtance resistance, and thermal
modeling of simple & well as complicaed devices and on-chip/off-chip interconneds at
HP. HP aso licensed FCAP2/3 to TMA (Tednology Modeling Associate) Inc. and the
codes were incorporated in the industry-standard cagpacitance/inductance etradion tool
called Raphael™.

For a given set of geometries and hias condition, FCAP2/FCAP3 solve the
Poisson equation using the finite difference method with self-adjusting redangular grid
and the incomplete Cholesky conjugate gradient (ICCG) method [15]. FCAP codes
embody a modeling language with which users write scripts to specify the geometry, bias
conditions, and the parasitic effeds to be simulated.

4 Using ADIC to Generate Derivative Codes for FCAP

In this sedion, we describe how we have differentiated FCAP codes using ADIC and the
hand optimizations that we performed to improve the performance of the derivative
codes.

4.1. Basics of ADIC Processing
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Figurel: Generating derivative codewith ADIC

Figure 1 illustrates the process employed to generate derivative ades with ADIC. The
user submits a set of C source files along with an optional control script to ADIC. The
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control script is used to fine-tune the behavior of ADIC; for example, we can specify that
a particular function should not be differentiated or the naming scheme of the generated
functions. ADIC goes through a number of stages to generate the derivative mde. For
each source file, ADIC generates a new file representing its differentiated version. The
generated sources are linked with ADIC runtime libraries and a driver written by the user.
The ADIntrinsics library, for example, addresses potential nondifferentiability in intrinsic
functions auch as sqrt(0), whereas SparsLinC provides support for sparse derivatives as
they occur, for example, in large-scale optimization.

A typicd driver has three main tasks. (1) It specifies and initializes the input
variables with resped to which derivatives adually must be mmputed. In fad, with
proper initialization, we can compute directional derivatives (this process is termed
“derivative seeding’’ [3,7]). (2) The driver then calls the derivative function to compute
the derivatives. (3) The driver passes the derivatives to another program fragment that
makes use of the derivative values.

To illustrate the transformation process we nsider the program fragment
consisting of statements 1 and 2 in Sedion 2. From this fragment, ADIC generates the
following code:

ad loc_0 = DERIV_val (x[1]) + DERIV_val (x[2]); (3)
ad _grad_axpy_2(DERIV_grad(a), 1.0,DERIV grad(x[1]),(4)
1.0, DERIV_grad(x[2]));

DERIV_val (a) = ad_l oc_0; (5)
ad_loc_0 = DERIV_val (a) / DERIV_val (x[2]); (6)
ad_adj _0 = - ad_loc_O0 / DERIV_ val (x[2]); (7)
ad_adj 1 = 1.0/ DER V_val (x[2]); (8)
ad _grad_axpy_2(DERIV_grad(y[0]), ad_adj_1, (9)

DERI V_grad(a), ad_adj 0,
DERI V_grad(x[2]));
DERIV_val (y[0]) = ad_l oc_O; (10)

Statements 3-5 represent the differentiated version of statement 1; statements 6-10
represent the differentiated version of statement 2. ADIC redeclares floating-point
variables and type declarations to be of type DERIV_TY PE:

t ypedef struct {

doubl e val ;

doubl e grad[ad_GRAD MAX] ;
} DERIV_TYPE;
#def i ne DERI V_val (x) (x.val)
#def i ne DERIV_grad(x) (x.grad)

DERIV_val is a maao that denotes the original floating-point value for eat
variable of type DERIV_TYPE. DERIV_grad isa maao that denotes the vedor of total
derivatives with resped to the diosen independent variables that is associated with an
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original floating-point variable. These macros and aher are defined in a healer file
automatically generated by ADIC. Different definitions of these maaos may be
generated by ADIC depending on the mode of operation. Currently, ADIC associates
derivative objects with all floating-point variables, unlessotherwise specified by the user
in a @ntrol script. The maximum length of the derivative objed (ad_GRAD_MAX) is
equal to the number of design parameters considered in the formulation.

4.2. Issues with FCAP Processing

We would like to run the entire sourcethrough ADIC and generate anew program
that computes and displays not only the original results but also their derivatives with
resped to various parameters. To make this possible, we modified the original yacc
grammar to handle the specificaion of independent variables. The FCAP grammar reals
the scripts written in the modeling language, parses it, then huilds the gpropriate data
structures used in the simulation. The script contains many “param” variables that
represent the design parameters (e.g., thickness of a plane) or some functions of other
design parameters. To compute derivatives with resped to such a variable, the user need
only change the “param” keyword to an “indepen” keyword. The modified grammar calls
the gpropriate derivative initializetion routine aitomaticdly. In addition, we provided
utilities for printing and extrading the derivatives. These modifications affeded 2 out of
the 30 FCAP3 input files. These files are then processed with ADIC, and the resulting
output files linked together to produce the FCAP3.AD program.

4.3. Postoptimization

To explore the benefits of using smarter AD algorithms and better analysis capabil ity, we

optimized the use of ADIC by hand. The following two approadhes were used.

» |dentification of functions whose output does not impact the final result. For example,
the results of certain test functions may affed only control flow. Once the user has
identified such functions, they can be specified in the antrol script so that ADIC will
not augment derivative computations for those functions.

* Derivative optimizaion for a sedion of the iterative linea solver for the Poison
equation. Employing a technique illustrated in [5], we goplied the reverse mode over
an entire cde sedion by hand. The resulting code was then substituted for the ADIC-
generated piece Since ADIC employs a @mnsistent naming and calling scheme, it is
easy to provide optimized derivative wdes for performance-critical sedions.

5 Statistical Modeling Using FCAP2.AD and FCAP3.AD

Statistically based worst-case modeling of devices has been extensively studied [13], but
little work has been done for on-chip statistical interconnect modeling [20]. Our
methodology addresses the problem of quantifying the impad of processinduced
interconned variations on resistance (R) and cgpadtance (C) and circuit performance In
degy-submicron technologies, the on-chip interconned delay can easily be more than
70% of the total delay. Furthermore, new planarizaion processes sich as chemical-
mechanicad polishing (CMP) can cause variations of over 40% in the interlayer dielectric
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(ILD) thickness which has a large impad on the variation of interconned cgpacitances.
Variations in interconned R and C cause variations in the circuit delay and crosgalk. If
the circuit delay or crosdalk exceeds the specification of a aitical circuit path, the dip
will have slower performance or fail completely. Therefore, it is important to get an
acarate estimate of the circuit delay and crosgak spreal for performance and yield
tuning. In this applicaion of FCAP2.AD and FCAP3.AD, we developed a novel
methodology for obtaining statistically based worst-case (i.e., 3-sigma) R (resistance), C
(capacitance), crosdalk, and delay given variations in interconned-related process
parameters[11,12].

This methodology is divided into three phases. In the first phase, the 3-sigma
values of cgpacitance resistance, and pertial derivatives of cagpacitances with resped to
seleded interconnect process parameters are generated in batch-mode computation as
part of an enhanced version of HIVE [10], which is a parameterized interconned model
generator and library for R and C, and the Derivative HIVE Generator. Most of time is
spent in derivative alculation in this phase. In the second phase, randomized but
correlated R and C are generated via aMonte Carlo method in a distributed N-Pi network
for a given net via the randomized RC generator. In the last phase, the randomized RC
net and nominal/3-sigma device models can be @mbined to charaderize delay or
crosgalk variation based on device and interconned variations.

Using this methodology for a long critical net analysis on a 0.35 um process we
realized a more than 70% improvement in 3-delay delay estimation compared with the
traditional skew-corner worst case delay. The 3-sigma crosgalk calculation for coupling
nets can also be @lculated in the similar manner.

6 Results

In this sedion we present the computational requirements of FCAP3.AD and compare
them with the divided-differences technique. A particular run of the statistical modeling
methodology with FCAP2 takes about 5-10 days of CPU time on an HP900Q755
workstation. The computational complexity increases by an order of magnitude when
FCAPS is employed. Most of this time is gent in computing derivatives, therefore, any
method that reduces the derivative computation cost is significant.

For our experiments, we use two input models that compute (1) cgpacitances of
two layers of 5-trace signals routed orthogonally between two ground layers, and (2)
patentials of two vertically parallel signals routed between two ground layers. The
experiments were performed on a Hewlett Padkard 9000780 workstation runnng HP-UX
10.20 and compiled using the Softbench C compiler with full optimizations.

Table 1 shows the runtime performance using divided-difference gproximations
versus ADIC “out of the box” and postoptimized derivative ade for FCAP3. Central
differences, which, unlike one-sided differences, usually deliver acceptable derivative
approximations for FCAP2/3, would have required 2pt+1 function evaluations to compute
p derivatives plus the function values. Comparing the derivative values computed via
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central differences and automatic differentiation, we found that these values agreed to
within one half of a percent.

The measurements are made for 2, 5, and 10independent variables. The @lumns
AD/Func. represent the runtime ratio of FCAP3.AD over FCAP3. The wlumns DD/AD
represent the runtime ratio of using central divided difference gproximations versus
FCAP3.AD. We seethat derivative aode generated by ADIC out of the box (AD) is 1.2
to 20 times faster than the divided-difference method (DD); and as the number of
independent variable increases, the speedup increases. This is as expeded, since non-
floating-point computations as well as certain derivative preacaimulation computations
are amortized over larger number of derivative computations [3,7]. In the cae of
postoptimized FCAP3.AD, the results are an additional fador of 1.7 to 24 times faster
than ADIC out of the box. Hence, the postoptimization steps can significantly improve
the runtime performance In either case, since the satistical modeling of on-chip
interconned properties is dominated by the st of computing derivatives, considerable
improvements are redized in the overall modeling process

Since ADIC currently augments all floating-point variables with an array for the
gradient object, memory requirements of the ADIC-generated code scale linearly with the
number of independent variables.

# of Indep. 2 5 10
Variables

Model 1 AD/Func. DD/AD AD/Func. DD/AD AD/Func. DD/AD
Function = 63.6 sec.

AD 4.08 1.23 6.92 1.59 12.1 1.74
AD Post-optimized 2.10 2.38 3.52 3.13 493 4.26
Model 2 AD/Func. DD/AD AD/Func. DD/AD AD/Func. DD/AD
Function = 31.3 sec.

AD 3.58 1.40 6.28 1.75 10.4 2.02
AD Post-optimized 2.08 2.40 3.71 2.96 4.99 421

Table 1. Comparison of FCAP3.AD versus central divided differences for two different input
models and three different sets of independent variables (3, 5, and 7). AD/Func. represents the
runtime ratio of FCAP3.AD over function evaluation (FCAP3). DD/AD representsthe runtime ratio
of central divided differences over FCAP3.AD.

6 Conclusions

FCAP2 and FCAP3 are 2-D and 3-D, respedively, simulators to measure the parasitic
eledrical effects of interconnects and devices. In the statistical modeling of interconneds,
the evaluation of gradients of FCAP-generated results are required. Conventional
techniques cannot be relied upon to deliver fast and acarrate derivatives. Divided
differences may not be acarate and are obtained sowly, symbolic goproacies do not
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appea to be feasible, and hand coding of derivatives is impradical. In contrast, automatic
differentiation can be used to obtain fast and acarate derivatives for functions defined by
large mdes.

In this paper, we have described how the ADIC (Automatic Differentiation in C)
tool has been used to generate derivative cdes for FCAP programs. This has been done
with minimal changes to the original source ®de. The experiments show that ADIC-
generated derivatives reduce dependence on grid variations compared with the central
divided difference method that had been employed before, while & the same time
executing up to twice & fast. By pogoptimizing ADIC-generated derivative mdes,
(namely, identifying inadive functions and employing the reverse mode of differentiation
aaossa code block of the linea solver), performance was improved by roughy another
fador of two. Since the @st of interconnect modeling is dominated by derivative
computation, these derivative improvements result in considerable speedup overall.

Automatic differentiation isa field in its infancy. Improvements in the complexity
of AD-generated derivative wdes are driven by using smarter ways to exploit the
asociativity of the dhain rule of differential calculus, by exploiting mathematica insight
concerning the algorithms governing the underlying program, and by improving the
program analysis cgpabilities of AD tools. Automatic differentiation also can be
generalized to derivatives of arbitrary order, and we have developed prototype second-
order cgpabilities for ADIC and ADIFOR.
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