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Abstract

Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and
core components in light water reactors are potential concerns to the nuclear industry and
regulatory agencies. The degradation processes include intergranular stress corrosion
cracking of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and
propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding)
into low-alloy ferritic steels in BWR pressure vessels. Crack growth data for wrought and
cast austenitic SSs in simulated BWR water, developed at Argonne National Laboratory under
U.S. Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled
into a data base along with similar data obtained from the open literature. The data were
analyzed to develop corrosion-fatigue curves for austenitic SSs in aqueous environments
corresponding to normal BWR water chemistries, for BWRs that add hydrogen to the
feedwater, and for pressurized water reactor primary-system-coolant chemistry. The
corrosion-fatigue data and curves in water were compared with the air line in Section XI of
the ASME Code.
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Executive Summary

Fatigue and environmentally assisted cracking of piping, pressure vessel cladding, and
coré components in light water reactors are potential concerns to the nuclear industry and
regulatory agencies. The degradation processes include intergranular stress corrosion
cracking of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and
propagation of fatigue or stress corrosion cracks (which initiate in sensitized SS cladding)
into low-alloy ferritic steels in BWR pressure vessels. Crack growth data for wrought and
cast austenitic SSs in simulated BWR water, developed at Argonne National Laboratory under
U.S. Nuclear Regulatory Commission sponsorship over the past 10 years, have been compiled
into a data base along with similar data obtained from the open literature. The data were
analyzed to develop corrosion-fatigue curves for austenitic SSs in aqueous environments
corresponding to normal BWR water chemistries (NWCs), for BWRs that add hydrogen to the
feedwater, and for pressurized water reactor (PWR) primary-system-coolant chemistry. The

corrosion-fatigue data and curves in water were compared with the air line in Section XI of
the ASME Code.

Under most loading conditions, the contribution from stress corrosion cracking is
negligible for PWR primary-water-chemistry conditions and for BWRs that employ
hydrogen-water chemistry (HWC). The available laboratory data show that at crack growth
rates (CGRs) of <10-10 m.s~1 (0.25 in-yr-1), the rates in BWR NWCs exceed the air line in
the ASME Code by a factor of ~20-30. Relatively few data are available in PWR environments
at rates of <109 m.s-1, At high CGRs the observed enhancement in both PWR and BWR
environments is relatively small, and the magnitude of the enhancement under the same
loading conditions is comparable in the two environments. Until further data are obtained
for PWR water at low CGRs, we recommended that the environmental enhancement in BWR
environments with HWC should be considered for PWR environments.
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Introduction

In-service inspection of piping and pressure vessels in light water reactors (LWRs)
occasionally reveals the presence of planar flaws (i.e., weld defects or stress corrosion
cracks) that must be addressed to determine whether a plant can be operated safely for a
given time period- before the:flaw is repaired or the component is replaced. -Reactor piping
systems are-designed :in accordance with Section TII of the ASME Code to ensure. that-they
have adequate resistance to initiation of fatigue cracks. However, once a flaw is detected and
its size and depth are determined, the extent to which the flaw will grow during continued
service can be determined by procedures outlined in Section XI of the ASME Code. At
present, Section XI of the Code does not explicitly account for effects of reactor coolant
environments on crack growth rates (CGRs) of austenitic stainless steels (SSs). This report
summarizes available data on growth of fatigue cracks and provides correlations for assessing
fatigue-crack propagation in austenitic SS piping in boiling-water-reactor . (BWR) and
pressurized-water-reactor (PWR) environments. ‘ '

Development of Corrosion Fatigue Curves

Most of the available data on corrosion fatigue of austenitic SSs in aqueous environments
have been'developed to support LWR- technology in the U.S. and abroad. Because Section XI
of the ASME Code currently provides only an in-air design curve, corrosion—fatigue data for
wrought and cast SSs in simulated BWR environments, obtained at Argonne National
Laboratory (ANL) (Appendix A) and from the literature, have been analyzed to develop
corrosion-fatigue curves for SSs in aqueous environments, ! The ‘approach is basically an
update of the work of Gilman et al.,2 incorporating additional data that are now available.

The CGR; super, in'an aqueous environment, is written as a superposition of a term
representing the contribution of stress corrosion cracking (SCC) under constant load, agcc;
a corrosion-fatigue term, 4 ey, representing the additional CGR under cyclic loading due to

the environment; and a mechanical fatigue term a,;,, representing the fatigue-crack growth
in air, . : - _

Asuper = aAsCC + Aeny + Aajr : (1)

For the SCC term, the correlation given in U.S. Nuclear Regulatory Commission (NRC)
Report NUREG-0313, Rev. 2, January 1988, is used for water chemistries with 8 Ppm
dissolved oxygen (DO); for water chemistries with 200 ppb oxygen, the CGR is taken as one-
third that given in NUREG-0313:

dscc = 2.1x 10718 K2.161 (ms-1) 8 ppm DO (2)
asce = 7.0x 1014 K2-161 (m.s-1) 200 ppb DO,

where K is the stress intensity factor in MPa-m!/2. The contribution from SCC is assumed to
be negligible for PWR primary-water-chemistry conditions and for BWRs that add hydroegen
to the feedwater (HWC) and attain  water chemistries that meet the purity and
electrochemical potential (ECP) conditions set forth in Ref. 3. The air term, based on the
work of James and Jones,4 is given by the current ASME Section XI. correlation at 288°C as



Aair =3.43x107128(R)AK33 /TR (m-s7}) (3)
S(R) =1+118R R<0.8
=-43.35+57.97R R>0.8

where TR is the rise time (s) of the loading wave [orm, R is the load ratio (Kmin/Kmax), and
AK is Kmax ~ Kmin. Following Shoji® and Gilman et al.,2 the corrosion fatigue term is
assumed to be related to a,; through a power law,

Aeny = Aég}r J (4)

The values of the coefficient A and the exponent m for water with 200 ppb DO at 288°C

were obtained by an empirical power-law-curve fit to the existing data for R <0.9, where

cyclic loading dominates and the stress corrosion term in the superposition model (Eq. 1)
can be ignored. The values are

A=45x10"5 (5)
m =0.5,

for CGRs in m's-! and K in MPa-m1/2,

In water with 8 ppm DO al 288°C, an empirical power-law-curve fit to the available data
gives .
=1.5x 104 (6)
= 0.5,
s~ and K in MPam1/2, -

g8»

for CGRs in

Figures 1 and 2 show a comparison ol most of the available experimental data at 288°C
for sensitized Type 304 SS in water with 0.2 and 8 ppm DO, respectively, with correlations
based on Egs. 1-6. Data for Types 316NG and solution-annealed 304 SS (all nonsensitized)
are compared with that for sensitized SS in Fig. 3. Although it is clear that the
nonsensitized steels are much more resistant to SCC initiation, they show comparable
environmentally enhanced CGRs under cyclic loading. This is also true for cast SSs in the
as-received and thermally aged conditions in water with 0.2 and 8 ppm DO, shown in Figs. 4
and 5, respectively. At DO concentrations >1 ppm, the CGRs of thermally aged CF-8M are
higher by one order of- magnitude than CGRs for the steel in the as-received condition.
Thermal aging has a smaller effect on CGRs of CF-8 SS under these conditions.

In most cases, the correlations were intended to be conservative but not necessarily
upper bounds for all of the data. The data from the ANL tests on wrought SSs in simulated
BWR water have been reported in the series of ANL semiannual reports on the NRC-
sponsored program and are summarized in Rel. 6. Data on as-received and thermally aged -
cast SSs were reported in Ref. 7. Other data were obtained from the literature {Refs. 8-14).

Ford et al.!5 developed a CGR model that includes the effects of DO concentration
(through changes in ECP). The model suggests thal environmentally enhanced CGRs (as
determined by coefficient A in the current case) should decrease by at least one order of
magnitude when the DO concentration decreases from =8 to 0.2 ppm. Based on slow-
strain-rate-tensile ( SSRT) tests, Kassner et al.16 suggested that the dependence of CGR on
DO concentration [O2] [ollows an =[O2]!/4 relationship over this range of oxygen
concentrations, i.e., the rates are somewhat less dependent on oxygen concentration. The
empirically determined decrease in A, corresponding to a decrease in DO from 8 to 0.2 ppm



(Egs. 5 and 6), is in reasonable agreement with that predicted in Ref. 16. It is =1/3 of the
decrease predicted by the model of Ref. 15. Both models predict that the environmental
contribution to the CGR should continue to decrease with further reductions in DO or ECP.
However, as shown in Fig. 6 (also note the data of Kawakubo in Fig. 7), the limited data at
lower R values and low DO concentrations (<20 ppb) are consistent with the superposition
model, Eq. 1, when the term corresponding to SCC (Eq. 2) is deleted, (namely, the curves
denoted as ésuper w/o SCC) with the value of A determined from data obtained in water with
0.2 ppm DO. Hence, in the present model, we assume that low DO and ECP levels
associated with HWC eliminate the SCC contribution in the superposition model Eq. (1), but
that the corrosion fatigue term, aeny, given by Eq. (4), is still important. As shown in Fig. 6,
the raodel of Ford et al.,15 which predicts a decrease in the value of A in water with low DO
content, appears to be somewhat nonconservative with respect to the available data.

Fig. 1.

Corrosion fatigue data for wrought
SSs in water containing 200 ppb DO
~ aguper W0 SCC at 288°C compared with models.
3super Diagonal line corresponds to crack

Ljungberg et al. , .
GE growth in air.
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Fig. 2,

Corrosion fatigue data for wrought
SSs in water containing 8 ppm DO
at 288°C compared with models.
T Aguper W0 SCC Diagonal line corresponds to crack

- asuper growth in air.
Kawakubo et al.

a (ms-1)

'aair (m-s=1)
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Fig. 4.

Corrosion Jatigue data for cast SSs in

water containing 200 ppb DO at
289°C compared with model.
’Dic'igonal line corresponds to crack
growth of wrought SSs in air.

Fig. 5.

Corrosion fatigue data for cast SSs
in water containing 8 ppm DO at
289°C compared with model.
Diagonal line corresponds to crack
growth of wrought SSs in air.



' Corroswn faugue data for wrought o
SSs'in water containing low DO at
288°C, superposition models, and
a model of Ford et al.15 Curvefor
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Data obtained from Refs. 17-20 for simulated PWR water and unpublished data by
Kawakubo® are shown in Fig. 7, along with the corrosion-fatigue curves developed for water
with 0.2 and 8 ppm DO. Also shown in Fig. 7 is a correlation, similar to that proposed by
Bernard and Slama,2! which increases the CGR in air by a factor of 2.5. This curve bounds
almost all of the data, except for those of Kawakubo. However, -all data_ (except for
Kawakubo’s) represent rather high CGRs (<10-9 m-s~1). Until additional data become
available-at lower frequencies in simulated PWR water, it seems prudent, when extrapolating
to lower CGRs, to use the curve based on the data obtained. in water with 200 ppb DO, but

which does not include an SCC term, because SCC is very unlikely in PWR water with low DO
-content. -~ . v :

. The correlatlons proposed. here are.very- s1m11ar to those proposed by Gilman et al.,2 i.e.,
one for water contalmng 8 ppm DO and another for nonsenstized Type 316NG SS in water

* T. Kawakubo, Accs 102486, 102487, EDEAC Database Battelle Columbus Obta_med by pnvate communication
from E. Eason, Modeling & Computer Services, April 1991.
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containing 200 ppb DO. However, the correlation proposed here for water containing
200 ppb DO is assumed to be applicable to both sensitized and nonsensitized SSs. The
predictions of the models developed in Ref. 2 and those presented here are shown in Fig. 8.

The differences are very small, and superposition of an SCC model with the model of Gilman
et al.2 eliminates any significant differences.

Fig. 8a.

Current model and model
proposed by Gilman et al.2 in
water containing 200 ppb DO.
Diagonal line corresponds to crack
growth of wrought SSs in air.

.asuper

- - = asuperw/o SCC

- --~-- Gilman et al.

Fig. 8b.

Current model and model
proposed by Gilman et al.? in
water containing 8 ppm DO.
Diagonal line corresponds to crack
growth of wrought SSs in air.

?super

- — = asuperw/o SCC

-~ ~--- Gilman et al.

10713 T . 10° 107 10
aair (m-s~1)

The correlations and data presented here have focused on water at 288°C. Relatively
few data are available in the literature on corrosion-fatigue CGRs at other temperatures.
SSRT data by Ruther et al.22 and Ford23 suggest that environmentally assisted CGRs peak at
=~200-225°C and that in high-purity (HP) water (conductivity <0.2 pS-cm-1), CGRs decrease
at both higher and lower temperatures. In tests by Ruther et al.22 at higher impurity levels
(conductivity >0.9 pS-cm-1), no decrease was observed at higher temperatures. Because the
tests were performed only with HpSO4 additions, it is not known whether this effect is
associated with specific chemical species or depends only on the overall impurity
(conductivity) level. In fracture-mechanics CGR tests at R=0.95, Ruther et al.24 confirmed
that in HP water, CGRs at 320°C were much lower than at 288°C. Andresen25 found that
CGRs in fracture-mechanics specimens of sensitized Type 304 SS were higher by a factor of
10-20 at 200°C than at 288°C and the data also suggest a sharp drop in CGRs at
temperatures >300°C in HP water. :



For convenience, the equations needed to describe corrosion fatigue in agqueous
environments are summarized in Table 1. In most cases, one of the terms in the superposition
models is dominant, but the magnitude of each of the terms should be estimated before a
simplified expression is used. Alternatively, because in most cases Tg and R are fixed, the CGR
at the lowest AK of interest can be computed and compared to the corresponding CGR in air.
This computation will determine a conservative multiplier that can be applied to a CGR (or
da/dN curve) in air for subsequent calculations. The equations for a iy and a eny can be
rewritten in the more familiar da/dN form, as shown in Table 2. However, as in the case of the
new curves for ferritic steels proposed for Section XI of the ASME code, the cyclic crack growth
curves in water are dependent on the rise time (frequency).

Table 1. Summary of equations for corrosion fatigue in
Table 1. Summary of equations for corrosion fatigue in BWR and PWR environments

a sce asce = 7.0 x 10-14 g2.161 0.2 ppm Dissolved Oxygen
8 ppm Dissolved Oxygen
ascc=2.1x10"13Kz2.161 PP e
A ir aur =3.43x10712 S(R)AK® 2 / Tx ASME Section XI air
SR) =1+1.8R R<0.8
=-43.35 +57.97R R>0.8
. } 5,05 )
A env Aenv=4.5x10724,; 0.2 ppm Dissolved Oxygen
,0.5
Qenv=1.5x104%4a, 8 ppm Dissolved Oxygen
a 3:1= éscc +.éenv +aa 0.2, 8 ppm Dissolved Oxygen
a=aey, +aur HWC and PWR

All crack rates in m-s-1, K in MPa-ml/2, and Tg in s.

Table 2. Corrosion fatigue curves in BWR and PWR environments in da/dN form

da/dNajr da/dN,, =3.43x10712S(R)AK33 ASME Section XI air

S(R) =1+1.8R R<08
=-43.35+5797R R>0.8

da/dNeny da/dNey, =8.33x107"' SR)*® TR AK!%® | 0 5 ppm Dissolved Oxygen
SR} =1+1.8R R<0.8
=-43.35+57.97R R>0.8

da/dNepy da/dN.,, =2.78x10719S(R)%5 T35 AK1 6% |g ppm Dissolved Oxygen
S(R) =1+1.8R R<0.8
=-43.35+57.97R R >0.8

a =asgcc +(da/dNepyv + da/dNgjr) TR | 0.2, 8 ppm Dissolved Oxygen
= (da/dNenv + da/dNajr) TR HWC and PWR

All crack rates in m-s™1, K in MPam!/2, and Tg in s.

-



“Appendix A: ANL Crack Growth Data Base for Wrought and Cast Austenitic Stainless Steels

- Crack growth tests have been conducted on fracture-mechanics specimens of wrought
Types 304, 316NG, and 347 and cast CF-3, CF-3M, CF-8, and CF-8M SSs to characterize
the environmental, loading, and material conditions that can produce SCC susceptibility in
these steels. In"the case of the cast SSs, CGR data were obtained on material in the
- as-received and thermally aged (10,000 h at 400°C and 30,000 h at 350°C) conditions. Data
that have been obtained over the past 10 years (October 1983 to September 1993) are
summarized in Refs. 6 and 7, along with references that contain details of the test methods,
composition of the materials, metallographic and fractographic information. Comparisons of
the data with predictions based on the corrosion-fatigue models given in Table 1 were also
presented. Agreement between predictions of the models and data for cast SSs was good.

Crack growth results for Type 316NG SS and sensitized (EPR = 2, 8, 20, and
30 C-cm—2) and solution-annealed Type 304 SS in HP water containing =200 ppb DO at
289°C are summarized in Table 3. Most of the data were obtained under high-R (0.8-0.95),
low-frequency (8 x 10-2 Hz) loading conditions at maximum stress intensity values of
27-46 MPa-m!/2. Table 4 contains data on sensilized and solution-annealed Type 304 SS in
HP water containing 5-8 ppm DO at 289°C over a wider range of load ratio, frequency, and
stress intensity. Crack growth results for Type 316NG and sensitized and solution-annealed
Type 304 SS at 289°C in water containing =200 ppb DO and ionic impurities (namely, SO?{.
CrO3”, NO3, and carboxylic acids) are summarized in Table 5. Most of the data were
obtained at a load ratio of 0.95 and a frequency of 8 x 102 Hz. The influence of several
tmpurity species at concentrations of ~6-1000 ppb (conductivity values =0.2-3.7 pS-cm-1)
on CGRs in the two steels can be obtained from these data. The effect of degree of
sensitization corresponding to EPR values of 0-30 C.cm~2 on CGRs in Type 304 SS can also
be determined from these data. Table 6 summarizes CGR results for Type 347 SS
specimens with different heal treatment conditions (slow-cooled and water quenched from
the austenitizing temperature). These data were obtained in water containing =200 ppb DO
and 100 ppb SO?{ at 289°C. Table 7 gives the CGR results on specimens of CF-3, CF-3M,
CF-8, and CF-8M grades of cast SS in the as-received and thermally aged conditions.
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Table 4. Summary of crack growth results for solution-annealed and sensitized
Type 304 SS specimens? in oxygenated (=5-8 ppm) water? at 289°C,
in which load ratio, frequency,© and stress intensity were varied

Potential Type 304 SS

Load Rise ANL
Cond., 304 SS, Ratio Freq.., Time, Kmnaxd, AK,© Rate, EPR, Ref. Report
uScecm-! mV(SHE) (10-2) Hz s MPa-m /2 (10-10) ms-! Ccm2 No. No.
<0.2 - 1.0 0] oo 34.0 (0] 1.20 1.4 59 84-60 III
<0.2 - 1.0 0 oo 37.0 0 2.90 1.4 59 84-60 III
<0.2 - 1.0 0 o0 38.0 0 4.50 1.4 59 84-60 III
<0.2 - 1.0 0 oo 33.0 0 2.20 1.8 59 84-60 III
<0.2 - 1.0 0 oo 29.0 o] 1.80 HAZ 60 85-751
<0.2 - 0.95 8.0 12 28.0 1.40 7.50 20 61 83-85 11
<0.2 - 0.95 8.0 12 34.0 1.70 10.0 20 61 83-85 11
<0.2 - 0.95 8.0 12 35.0 1.75 12.0 20 61 83-85 11
<0.2 - 0.95 0.8 124 34.0 1.70 1.20 20 61 83-85 II
<0.2 - 0.95 0.8 124 38.0 1.90 1.50 20 61 83-85 1I
<0.2 - 0.95 0.8 124 50.0 2.50 4.70 20 61 83-85 II
<0.2 - 0.95 0.8 124 61.0 3.04 11.0 20 61 83-85 11
<0.2 - 0.95 0.8 124 64.0 3.20 17.0 20 61 83-85 11
<0.2 - 0.95 0.08 1250 28.0 1.40 1.20 20 61 83-85 11
<0.2 - 0.95 0.08 1250 67.0 3.35 19.0 20 61 838511
<0.2 - 0.95 0.08 1250 70.0 3.50 32.0 20 61 83-85 11
<0.2 - 0.95 0.08 1250 72.0 3.60 33.0 20 61 83-85 11
<0.2 - 0.95 0.2 495 36.0 1.70 1.70 1.4 59 84-60 I
<0.2 - 0.95 0.2 495 37.0 1.85 1.50 1.4 59 84-60 III
<0.2 - 0.95 0.2 495 39.0 1.95 2.00 1.4 59 84-60 III
<0.2 - 0.95 0.2 495 40.0 2.00 3.10 1.4 59 84-60 III
<0.2 - 0.95 0.2 495 28.0 1.40 2.20 HAZ 60 85-751
. <0.2 - 0.94 10.0 5 31.0 1.86 3.10 1.4 59 84-60 l1II
<0.2 - 0.94 10.0 5 32.0 1.92 1.90 1.4 59 84-60 III
<0.2 - 0.94 10.0 5 30.0 1.80 2.10 1.8 59 84-60 III
<0.2 - 090 0.2 495 28.0 2.80 1.30 HAZ. 60 85-751
<0.2 - 0.80 0.2 495 29.0 5.80 6.60 HAZ 60 85-75 1
<0.2 - 0.80 0.2 495 31.0 6.20 4.40 1.4 59 84-60 III
<0.2 - 0.80 0.2 495 32.0 6.39 7.40 1.4 59 84-60 III
<0.2 - 0.79 0.2 495 32.0 6.70 5.50 1.4 59 84-60 III
<0.2 - 0.79 0.2 495 36.0 7.55 5.40 1.4 59 84-60 III
<0.2 - 0.70 0.2 495 31.0 9.30 3.40 1.4 59 84-60 III
<0.2 - 0.70 0.2 495 33.0 9.90 5.90 1.4 59 84-60 III
<0.2 - 0.60 0.2 495 29.0 11.60 56.0 1.8 59 84-60 I
<0.2 - 0.60 0.2 495 33.0 13.20 6.60 1.4 59 84-60 III
<0.2 - 0.50 0.1 995 32.0 16.00 2.60 1.4 59 84-60 III
<0.2 - 0.50 0.2 495 31.0 15.50 8.90 1.4 59 84-60 III
<0.2 - 0.50 0.2 495 33.0 16.50 34.0 1.4 59 84-60 Il
<0.2 - 0.50 0.2 495 32.0 16.00 28.0 1.8 59 84-60 III
0.12 206 0.95 8.0 12 27.6 1.38 0.05 [0} 58 92/6
0.12 206 0.95 8.0 12 29.2 1.46 9.2 8 58 92/6
0.12 206 0.95 8.0 12 28.2 1.41 1.0 30 58 92/6

aCompact-tension specimens (1TCT) of Type 304 SS with the following heat treatments: Heat No.
10285, solution anneal at 1050°C for 0.5 h plus 700°C/10 min and 450°C/146 h or 450°C/250 h
(EPR = 1.4 C-cm™2), or 500°C/24 h (EPR = 1.8 C.cm™2). Heat No. 30956 solution anneal at 1050°C
for 0.5 h and quenched (EPR = 0 C-cm2) followed by 700°C for 0.67 h (EPR = 8 C-cm~2), 700°C for
12 h (EPR = 20 C-cm™2}), or 700°C for 24 h (EPR = 30 C-cm™2). Heat affected zone (HAZ) specimen
was fabricated from a weld overlay applied to a 12-in. diam pipe.

bEffluent DO concentration was 5-8 ppm.

CPositive sawtooth waveform was used.

dStress intensity, Kmax, values at the end of a =500-1000-h time period of steady-state crack
growth.

€AK = Kmax (1 — R), where the load ratio R = Kmin /Kmax-
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Table 6. Summary of crack growth results for Type 347 SS specimens? in oxygenated

water at 289°C, in which load ratio®? and stress intensity were varied

Water Chemistry Potentials CGR Data
Load Rise ANL
Cond, Oz, SO}, 304SS. Pt Ratio  Freq. Time, KpgaS AKS  Rate, Ref. Report
puS-cm~! ppb ppb . mV(SHE) 10-2 He s MPa- m172 10-10 m- s-1 No. No.
Slow-Cooled Specimen
0.92 200 100 147 200 0.90 8 12 19.9 1.99 0.85 62 90/48
0.92 200 100 121 159 0.90 8 12 22.3 2.23 3.40 62 90/48
0.95 200 100 174 223 0.95 8 12 22.4 1.12 0.09 62 90/48
0.96 200 100 185 211 0.95 8 12 27.6 1.38 1.70 62 90/48
0.92 200 100 176 210 0.95 8 12 30.7 1.53 3.00 62 90/48
0.89 200 100 138 174 1.00 o oo 31.1 (o) 0.89 62 90/48
Water-Quenched Specimen
0.93 200 100 150 208 0.50 8 12 19.8 9.90 30.0 62 90/48
0.92 200 100 147 200 0.90 8 12 19.8 1.98 0.09 62 90/48
0.92 200 100 121 159 0.90 8 12 22.0 2.20 1.30 62 90/48
0.95 200 100 174 223 0.95 8 12 22.1 1.11 0.08 62 90/48
0.96 200 100 185 211 0.95 & 12 27.0 1.35 0.60 62 90/48
0.92 200 100 176 210 0.95 8 12 29.8 1.49 0.60 62 90/48
0.89 200 100 138 174 1.00 0o w 30.0 [¢] 0.61 62 90/48
8Compact-tension specimens (1TCT) were fabricated [rom Heat No. 46113.
bpositive sawtooth waveform was used.
CStress intensity, Kimax. value at the end of cach time period.
daK = Kmax(1 - R), where the load ratio R = Kyin/Kinax.
Table 7. Summary of crack growth resulls for cast SS specimens@ in water at
289°C, in which load ratioP and stress intensity were varied?
Water Chemistry Potentials CGR Data
. load Rise ANL
Cond., 02, SO%' 304 SS, Pt, Ratio Freq..  Time, Kmax¢, AKd Rate, Report
uScm-! ppm ppb mV{SHE) 10-2 iz s MPa-m1/2 1010 ms1 No.
As-received CI-3M Speciimen (Heat No. F5524) Containing 5.0% Ferrite
0.90 0.2 100 136 120 0.95 7.7 12 22.6 1,18 1.90 90/4
0.90 0.2 100 106 G6 0.25¢ 10.0 5 20.7 15.50 35.0 90/4
0.90 0.2 100 81 41 0.95 7.7 12 24.0 1.20 2.50 90/4
1.10 0.2 100 134 95 1.00 [¢] oo 24.1 (o} 0.32 90/4
As-reccived CI-3 Specimen (lleat No. P2) Containing 15.6% Ferrite
0.93 0.2 100 150 208 0.50 7.7 12 19.6 9.80 27.0 90/48
0.92 0.2 100 147 200 0.90 7.7 12 19.7 1.97 0.09 90/48
0.92 02 100 121 159 0.90 7.7 12 21.8 2.18 0.40 90/48
0.92 6.2 100 176 210 0.95 7.7 12 29.2 1.46 0.11 90/48
As-received CF-8M Specimen (Hieat No. 75) Containing 27.8% Ferrite
0.13 6.2 [¢] 258 332 0.95 7.7 i2 25.83 1.26 <0.02 93/2
0.16 5.3 0 240 317 0.95 7.7 12 34.7 1.73 1.6 93/2
0.14 7.0 0 242 296 0.95 7.7 12 35.2 1.76 1.8 93/2
0.13 <0.002 0 -560 -580 0.95 7.7 12 35.2 1.76 <0.02 93/2
0.18 0.3 0 198 243 0.95 7.7 12 36.4 1.82 1.4 93/2
0.11 1.1 [¢) 216 260 0.95 7.9 12 36.8 1.84 1.5 93/2
0.11 0.9 4] 206 257 1.0 o] v 36.8 o] <0.02 93/2
0.10 7.2 0] 247 301 0.95 7.7 12 45.6 2.28 2.5 93/2
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Table 7. Continued

. CGR Data

Water Chemistry Potentials o ) )
) e Load Rise ——— - ANL v
Cond., 0j, SO% . 304 85, P, Ralic  Freq.,, Time, Kpas . - AKd . Rate,  Report,
uS.em-! ppm ppb  mV(SHE) . 102 1z s MPaml”2 - -10-109ms=1 No.
Aged! CI'-8M Specimen {tieat’ No, 75) Containing 27.8% Feirite
0.13 . 6.2 0 258 332 0.95 7.7 12 24.7 . 1.23 4.4 93/2
016, 53 - .0 240 317 095 .. 7.7 . 12 372 :1.86 8.1 93/2
0.14 70 - O 242 296 095 7.7 12 46.0 2.30 19.6 = 1 93/2
7013 <0.0020 -560 ' ~580 ~ - 0.95 7.7 12 7 46.0 2.30 <002 © 93/2
018 03 .0 198 243 . . 095 7.7 12 475  .2.38 1.1 93/2
0.11 11 0 216 260 095 7.7 12 53.6 2.68 7.3 93/2
0.11 0.9 (0] 206 257 1.0 o . T e 61.4 0 20.8 93/2
'Agedg CF-8M Specimen (lleat No. 75) Containing 27;.8% Ferrite I
0.07 4.4 0 256 280 0.80 7.7 I ] 31.8 6.36 58.0 93/27
0.08 43 0 237 243 0.90 | 7.7 12 -33.1 331 162 93/27
0.0'Z. 4.2 (8] 247 . 301 : 0.70 7.7 12 34.9 10.47 . 122.0 93/27
© 0.07. 4.5 .0 252 337 0.30 7.7 12 38.2 26.74 349.0 93/27
0.11 . 0.43 [¢] 205 218 . 0.90 7.7 12 40.6 4.06 15.9. 93/27
0.07 0.60 0 214 223 0.70 7.7 12 - 438.8 13.14 110.0 93/27
0.11 0.50 0 205 211 0.30 7.7 12 52.5 36.75 : 666.0 93/27
As—received CF-8 Specimen {Heat No. 68) Containing 27.8% Ferrite -
0.07 4.4 Q 256 280 0.80 7.7 12 30.2. - 6.04 16.9 . 93/27 -
0.08 4.3 0 237 243 0.90 7.7 12 30.5 3.05 3.9 93/27
0.07 4.2 [¢] 247 301 0.70 7.7 12 30.9 9.27 39.2 93/27
0.07 45 0 252 837 080 77 12 320 22.40 170.0 93/27
0.11 0.43 0 2056 218 0.90 7.9 - 12 - 32.4 3.24 ‘2.9 93/27
0.07 0.60 [¢] 214 223 0.70 7.7 12 33.1 9.93 32.8 93/27
0.11 0.50 (0] 2056 211 0.30 7.7 12 34.4 24.08 157.0 93/2_7
. /\gcdr CF-8 $pceimen (Heal No. 68) Containing 27.8% Ferrite
- 0.3 6.2 [¢] 258 332 0.95 7.7 i2 26.0 . 1.30 <0.02 93/2-
0.16 5.3 [¢] 240 317 0.95 7.7 12 35.0 1.75 0.42 93/2
0.14 7.0 0 242 296 095 7.7 12 369  1.85 4.6 93/2
0.13 <0.0020> " ~560 =580 o 0.95 7.7 12 36.9 1.85 <0.02 93/2
0.18 0.3 0 198 243 0.95 7.7 12 37.4 1.87 0.93 93/2
011 1.1 0 216 260 095 7.7 12 37.8 1.89 1.4 93/2
0.11 0.9 0 7206 257 1.0 (VI T 37.8 (0] <0.02 93/2
0.10 “7.2 0 247 301 0.95 7.7 i2 52.5 2.62 11.3 93/2
Agedg CF-8 S$pecimen (Heal No. 68) Containing 27.8% Ferrite
0.07 4.4 0 256 280 0.80 7.7 12 30.9 6.18 31.9 93/27
0.08 4.3 0 237 243 0.90 7.7 12 31.3 3.13 5.4 93/27
0.07 4.2 [v] 247 301 0.70 7.7 12 32.1 9.63 53.7 93/27
.0.07 4.5 0 - 252 337 0.30 7.7 12 33.0 23.10 157.0 93/27
0.11 . 0.43 4] 205 218 0.90 7.7 12 33.6 3.36 4.2 93/27
0.07 0.60 0 214 223 0.70 7.7 12 34.4 10.32 32.4 93/27
0.11 0.50 0 205 211 0.30 7.7 12 35.8 25.06 191.0 93/27

'_aCompaqt—tension spccimens'were fabricaled from Heat No. F5524 (0.7TCT) and (1TCT)

from Heat Nos. P2, 68, and 75.
bpgsitive sawtooth waveform was uscd. )
CStress intensity, Kimax. value at the end of each time period.
daK = Kiax(1 - R}, where the load ratio R = Kinin/Kinax-
€Sine waveform was used. )
fSpecimens aged for 10,000 h at 400°C.
8Specimens aged for 30,000 h at 350°C.
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Appendix B: Effects of Water Chemistry drri'C'GRsvgf AUsﬁéﬁitic Stainless Steels

The correlations in Eqgs. 1-6 are primarily based on DO concentration in water although

the CGR data in the Figs. 1-7 were obtained in both HP water (<0.2 uS-cm-1) and in water
containing <100 ppb of variotis fonic impurities (<1.0 pS-cm-1). It is well known that ionic
impurities (SOF™, CI-, etc.) at low concentrations increase susceptibility of these steels to
'SCC'(décrease the threshold stress intensity for cracking) and also Increase the CGRs
througha power-law dependence on concentration (e.g., [SOF Iz, where experimental and
‘predicted values of z are ~0.5 and 1.8, respectively).24 To mitigate SCC of sensitized Type
304 SS in BWR recirculation ' system’ piping, plant operators have made significant
improvements in‘water quality over the past several years. Because the ingress of ionic
impurities into the coolant system from leaks in condenser tubes and from ion-exchange
resins (including resin fines) in the reactor water cleanup system (RWCS) is maintained at
very ‘low levels, soluble corrgsion products from system materials are the major species
present in BWR water. Examples include Cu* and Cu2* in plants with copper alloy condenser
tubes and/or feedwater heaters and HCrO; [from corrosion of Types 304 SS feedwater
‘heatérs, Type 430 SS moisture separator vanes, and Type 410 SS high-pressure turbine
rotor blades.” The austenitic. SS piping, weld cladding on the interior of the reactor vessel,
and internal components fabricated from this material are relatively minor sources of
HCrO3. Because only a small fraction of the recirculation water in BWRS passes through the
RWCS, the concentration of corrosion—product ions in the reactor water can be considerably
greater than in the feedwater (e.g., ~25-35 ppb versus <1 ppb HCrOz, respectively).
-Consequently, “in ‘plants that operate with optimum water chemistry, HCrO; and the
counterbalancing hydronium cation (H30+) are major contributors to water conductivity,
with minor contributions from 'SO%’ and other anions.

Role of Chromate and Suifate in SCC

We conducted fracture-mechanics CGR experiments to determine the effect of HCroO3z
additions to simulated BWR water (without and with low levels of SO%‘) on SCC of Type 304
§8.26  Specimens were heat treated to produce a solution-annealed condition and low,
moderate, and high levels of sensitization corresponding to electrochemical potentiokinetic
reactivation (EPR) values of 0, 2, 8, and 30 C-cm-2, respectively.

The solution-annealed specimen (EPR = 0 C.cm-2) exhibited very low CGRs
(<5 x 10712 m-s-1) under all water chemistry conditions. In the case of the specimens with
moderate and high degrees of sensitization (EPR = 8 and 30 C-cm-2), the specimen with the
lower EPR value exhibited the highest CGRs under each test condition. This level of
sen’s’iti‘Za‘t’bn produced maximum SCC susceptibility in SSRT tests at 289°C in oxygenated
water without and with 100 ppb SO%7.26 The results for the sensitized specimens can be
‘summarized. In oxygenated water, 50-200 ppb HCrO, has a beneficial effect, as indicated
by the low CGRs (<7 x 10-1!'m-s-1). In water containing 50 ppb HCrOg, low levels of SO%~
(6 or ‘15 ppb) did not lead to high CGRs. In water containing 50 ppb HCrO; and 25 or
100 ppb SO%", CGRs of the moderately sensitized specimen (EPR = 8 C.cm-?) increased
significantly (to >3 x 10-10 m-s~l), whereas the heavily sensitized specimen exhibited this
rate in water containing 100 ppb SQ?{. At a highér HCrO; concentration {e.g., 200 ppb) in
oxygenated water containing 100 ppb SOj~, the CGRs of the sensitized specimens were
high (>1 x 1010 m-s-1). However, after decreasing the SO3~ concentration to 50 ppb, the
CGRs of the sensitized specimens decreased (o <2 x 10-!! m-s-1.



Although SSRT tests indicated that chromate at concentrations >100 ppb in oxygenated
water contributes to intergranular (IG) SCC in a manner similar to that of other
oxyanions,24.26 the present CGR resulls suggest that this species has a mitigating effect on
IGSCC at lower concentrations, provided that the ratio of chromate concentration to sulfate
concentration is 23. Figure 9 shows the CGRs of the moderately sensitized specimen
(EPR = 8 C-cm~2) as a function of the ratio of the concentrations of chromate and sulfate in
the feedwater: For the purpose of obtaining the ratios in Fig. 9, when these species were
not added to the {eedwater, their concentrations were assumed to be =1 ppb. The limited
data suggest that the CGRs are in the low regime if the (CrO37)/(SO%") ratio in the
feedwater is 3. Chromale concentrations in feedwater and effluent water were determined
by colorimetric analyses (Cr+6) on grab samples. The measured feedwater concentrations
were in excellent agreement with the amounts added to the water; however, the effluent
values were lower by a factor of >5 because of the low flow velocity and reaction with the
large surface area of SS in the autoclave system at 289°C. The feedwater and effluent sulfate
concentrations were virtually the same in all experiments.

To further explore the dependence of CGR on impurity concentration, ANL CGR data for
sensitized Type 304 SS were separated inlo three conductivity regimes, i.e., 0.88-1.1,
0.28-0.54, and <0.2 uS-cm-!, and the rates were compared with values obtained from the -
ASME Section XI correlation for crack growth in air under the particular loading conditions.
The data obtained at load ratios 20.95 and <0.92 are shown in Figs. 10 and 11, respectively.
The results at the three conductivily levels in water containing =200 ppb DO fall within a
wide scatter band and it is dilficult to deduce a clear influence of water purity on the CGRs.
Figure 12 shows CGR results {for Type 304 SS with dilferent levels of sensitization at an R
value of 0.95 in water containing =200 ppb DO and different chromate and sulfate
concentrations in which the (CrOﬁ')/(SO?{) ratio was >3. The conductivity of the water in
these tests was 0.2-1.3 uS-cm-1, i.e., the same range as in the data in Figs. 10 and 11. In
contrast to the latter results, the CGRs in Fig. 12 lie near the ASME air line and are an order
of magnitude lower than the corrosion-{fatigue curve [or high-temperature water obtained
from Eqgs. 1 and 2.

Because chromate concentrations in BWR recirculation water are =25-35 ppb, these
results suggest that sulfate concentration would have to be maintained at <10 ppb to
mitigate IGSCC. Typically, values of =5 ppb can be achieved. Consequently, these water
chemistry conditions would place sensitized Type 304 SS in the low-CGR regime. Because
laboratory corrosion-fatigue testing [acililies typically employ once-through water flow
systems, chromate levels due to corrosion of the autoclave and piping are not high enough to
reflect the potentially beneficial ellect observed when chromate is added to feedwater
containing low-sulfate concentrations. Consequently, most CGR data obtained in HP
oxygenated water will lie above the air line, as shown in Figs. 10 and 11. Hence, the
laboratory test results, although conservative, may not be representative of CGRs in
recirculation piping exposed to a BWR water chemistry with low sulfate levels (<10 ppb)
“where the chromate level is =25-35 ppb. Water chemistry data that includes both the
chromate and sulfate concentration is available for a number of BWRs. An assessment of
appropriate CGRs for planis that have a (CrO?{)/ (SO?{) ratio >3 can be made on a case-by-
case basis. A factor of 10-20 in the expected CGRs for a shallow crack in the HAZ of a weld
could provide significant relief in inspection intervals and influence piping repair and
replacement decisions. Also, efforis to remove chromate from recirculation loop water to
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Fig. 9.

Regime of high and low CGRs for
moderately sensitized (EPR= 8
C-cm™2) Type 304 SS specimen at
289°C as a function of ratio of
chromate and sulfate concentrations in
Jeedwater containing ~200 ppb DO

Fig. 10.

ANL corrosion fatigue data at R >0.95
Jor sensitized Type 304 SS in 289°C
water containing 200 ppb DO at
several conductivity levels. Diagonal
line corresponds to crack growth in air,

Fig. 11.
ANL corrosion fatigue data at R <0.92

Jor sensitized Type 304 SS in 289°C
water containing 200 ppb DO at
several conductivity levels. Diagonal
line corresponds to crack growth in air.
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decrease the water conductivity and mitigate SCC (without decreasing the critical sulfate
level) would be counterproductive.

Effect of Organic Substances in Oxygenated Water on VSCC

Typical chemicals at power plants include paint products, glycol, hydraulic fluids,
lubricants, detergents, chemical cleaners, laundry chemicals, freons, diesel fuel, and ion-
exchange resin regeneration chemicals. Potential chemical contaminants2? and possible
pathways28 for entry of various substances into BWR coolant systems have been evaluated.
Some of the long-lived products that may exist in BWR water due to organic intrusions are
carboxylic acids, alcohols, phenolics, aromatic hydrocarbons, hydrogen halides, sulfuric and
sulfonic acids, amines, and other substances.2? These organic impurities and their
decomposition products are a potential concern in BWR water and PWR secondary-system
water in terms of increased susceptibility to localized corrosion and SCC of piping and heat-
exchanger tube materials. :

Organic impurities are also a concern in PWR secondary—coolant water systefns because
organic acids increase cation conductivity, which complicates secondary water monitoring
and control. A survey of organic acids, total organic carbon, and inorganic anions in the
secondary water cycles of 13 PWRs indicated that organic acids were responsible for a major
fraction of the cation conductivity in many of the plants.29 Acetic and formic were the most
common acids; however, lactic, propionic, and butyric acids were also present in some of
the systems. Make-up water was the major source of the organic impurities, some of which
were in colloidal, nonionic form.29

The role of organic oxygen scavengers and other organic species in SCC susceptibility of
sensitized Type 304 SS was investigated in SSRT tests. Subsequently, the influence of
several carboxylic acids (acetic, formic, lactic, oxalic, propionic, butyric, and valeric) on the
SCC behavior of the steel was determined in cyclic loading tests on fracture-mechanics-type
specimens in oxygenated water. These organic acids are among those species found in BWR
and PWR coolant systems at low concentrations because of ingress and decomposition of
organic substances used in the plants. The beneficial effect of some of these substances on
SCC of austenitic SSs can be rationalized in terms of the well-known influence of low-

20



oxXygen concentration-on the ECP.30-35 - Although the organic acids could scavenge oxygen,

other mechariisms can, in principle, account for their effect on’ SCC of sensitized ’I‘ype 304
SS in high-temperature water. 16.36 '

Fracture-mechanics CGR tests were perlormed on sensit1zed Type 304 SS in HP water
containing =200 'Ppb DO. ih oxygenated water with 0.1 and 1.0 ppm propionic or- butyric
acid, and in water with 1.0 ppm butyric acid and either 100 ppb sulfate or chloride.36 A
baseline CGR -of -2.9 x 10-10 m's-1 was obtained in HP water. The addition of 0.1 ppm
propionic acid ‘had no effect on the CGR; however, an increase in concentration to 1.0 ppm:
caused a decrease in the CGR by an-order of magnitude. When propionic acid was no Ionger
added to the feedwater the CGR returned to the initial basehne value '

‘When 1.0 ppm butyric acid was added to the oxygenated feedwater, ‘no crack growth'
was observed over a time interval of =1150 h under low-frequency, high-R loading at a Kmax
value of =34 MPa-m!/2. A decrease in the butyric acid concentration from 1.0 to 0.1 ppm
eventually caused the CGR to increase to a value of 1.9 x 10-10 m-s-! after =500 h. The lower
concentration of the acid was not sufficient to inhibit crack growth as was the case with
0:1 ppm proplomc acrd in the feedwater

In oxygenated water containing 1 ppm butyric acid and 0.1 ppm sulfate (as H2S0y), the
CGRincreased significantly to a value of 7.4 x 10-10 m.s~1. When sulfate was removed from
the feedwater, the CGR once again decreased to zero over a period of =600 h. -Similarly,
when 0.1 ppm chloride (as NaCl) was added to the oxygenated feedwater containing
1.0 ppm butyric acid, the CGR of the steel increased to a value of ~1.5 x 10-10 m.s-1. over an
interval of =1150 h. When chloride was not added to the feedwater, the CGR again
decreased to zero, even at the relatively high stress intensity factor of =40 MPa-m1/2. The
results clearly- indicate that the organic acid was not effective in inhibiting crack growth in

the steel when either sulfate or chloride was present in the oxygenated water at -the
0.1 ppm level.

It is possxble that organic acids can mhnblt SCC in oxygenated water even though the
ECP regime of the steel is conducive to cracking (>-250 mV [SHE] at 289°C). Many organic
substances such as aliphatic alcohols and acids, ‘carboxylic acids, and others adsorb on metal
and oxide electrodes at very high potentials associated with - oxygen evolution at ambient
temperature.37-41  The rate constant for oxygen evolution is independent of the presence of
the inhibitor, i.e., the effect of the inhibitor was mainly to block active reaction sites.37 The
adsorbability of the various substances increases as the molecular weight increases,38.39 and
the adsorption follows a logarithmic isotherm at concentrations >10-5 M (= 1 ppm) 3941 1t
is plausible that carboxylic acids, at a similar concentration in the water, adsorb on the oxide
surface of Type 304 SS and inhibil oxygen reduction, which is the cathodic partial process

that couples with anodic dissolution al the crack tip in a shp dissolution mechanism of
crack growth

The 1nﬂuence of organic species in normal BWR water on CGRs of recirculation system
piping is difficult to quaniify. As in the case of chromate when the sulfate levels are very low
(<15 ppb), organic acids (and their precursors that do not contribute to conductivity -and are
difficult to detect); in fact, may not be deleterious. These species may, in part, account for
the large scatter in the CGR data (i.e., the low values in the scatter band of CGR data in
Figs. 1-5) in HP oxygenated water. In corrosion-fatigue testing systems, organic substances
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can be present in the [eedwater and pass through the water purification system, or be
introduced into the feedwater through the cover gas that is typically used to adjust the DO

concentration of the water. When this occurs, CGRs can lie in the lower range of the scatter
band.

These subtle experimental features can obscure the true effects of DO and impurity
concentrations on CGRs and complicate application of laboratory data to predictions of crack
growth in piping systems with unique water chemistries that contain corrosion products
and impurities at very low concentrations. In some instances, water chemistries (e.g., high
chromate/sulfate ratios but with low conductivities, indicative of low concentrations of other
ionic species) may produce CGRs below the upper-bound crack-growth curve. Similarly,
CGR data obtained in HP oxygenated water conlaining organic species at low levels can
produce low values near the ASME Section X1 air line. These data also contribute to the
large scatter band.
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